Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T02:37:32.673Z Has data issue: false hasContentIssue false

Relaxation of Aggregates in a Jamming Colloidal Suspension After Shear Cessation

Published online by Cambridge University Press:  01 February 2011

Francesca Ianni
Affiliation:
[email protected], SOFT-INFM-CNR, Universita' di Roma La Sapienza, P.le Aldo Moro, 2, Rome, 00185, Italy
David Lasne
Affiliation:
[email protected], P.P.M.D. UMR 7615 ESPCI, 10, rue Vaquelin, Paris, N/A, 75231 Paris Cedex 05, France
Regis Sarcia
Affiliation:
[email protected], P.P.M.D. UMR 7615 ESPCI, 10, rue Vaquelin, Paris, N/A, 75231 Paris Cedex 05, France
Pascal Hebraud
Affiliation:
[email protected], P.P.M.D. UMR 7615 ESPCI, 10, rue Vaquelin, Paris, N/A, 75231 Paris Cedex 05, France
Get access

Abstract

The reversible formation of aggregates in a shear thickening, concentrated colloidal suspension is investigated through speckle visibility spectroscopy, a dynamic light scattering technique recently introduced [1]. Formation of particle aggregates is observed in the jamming regime, and their relaxation after shear cessation is monitored as a function of the applied shear stress. The aggregate relaxation time increases when a larger stress is applied. Several phenomena have been proposed to interpret this behavior: an increase of the aggregate size, or a closer packing of the particles in the aggregates.

1. P.K. Dixon, D.J. Durian, Phys. Rev. Lett. 90, 184302 (2003).

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Dixon, P.K., Durian, D.J., Phys. Rev. Lett. 90, 184302 (2003).Google Scholar
2 Lootens, D., Damme, H. Van, Hébraud, P., Phys. Rev. Lett. 90, 178301 (2003).Google Scholar
3 Maranzano, B.J., Wagner, N.J., J. Rheol. 45, 1205 (2001).Google Scholar
4 O'Loan, O.J., Evans, M.R., Cates, M.E., Physica A 258, 109(1998).Google Scholar
5 Ball, R.C., Melrose, J.R., Adv. Colloid Interface Sci. 59, 19 (1995).Google Scholar
6 Laun, H.M., Bung, R., Hess, S., Loose, W., Hesse, O., Hahn, K., Hadicke, E., Hingmann, R., Schmidt, F., Lindner, P., J. Rheol. 36, 743 (1992).Google Scholar
7 Varadan, P., Solomon, M.J., J. Rheol. 47, 943 (2003).Google Scholar
8 Lootens, D., Damme, H. van, Hémar, Y., Hébraud, P., Phys. Rev. Lett., 95, 238302 (2005).Google Scholar
9 Stober, W. and Fink, A., J. Colloid Interface Sci. 26, 62 (1968).Google Scholar
10 Lootens, D., Ciments et suspensions concentrées modèles. Écoulement, encombrement et floculation, PhD thesis (2004).Google Scholar
11 Pine, D.J., Weitz, D.A., Chaikin, P.M., Herbolzheimer, E., Phys. Rev. Lett. 60, 1134 (1988).Google Scholar
12 Wu, X.L., Pine, D.L., Chaikin, P.M., Huang, J.S., Weitz, D.A., J. Opt. Soc. Am. B 7, 15 (1990).Google Scholar