Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-26T04:37:51.331Z Has data issue: false hasContentIssue false

Relaxation Method Simulation of Confined Polymer Dispersed Liquid Crystals in an External Field

Published online by Cambridge University Press:  21 March 2011

J. J. Castro
Affiliation:
On sabbatical leave from Departamento de Física, CINVESTAV del IPN Apdo. Postal 14-740, 07300 México, D.F.
R. M. Valladares
Affiliation:
Departamento de Física, Facultad de Ciencias, UNAM Apdo. Postal 70-646, 04510 México, D. F.
A. Calles
Affiliation:
Departamento de Física, Facultad de Ciencias, UNAM Apdo. Postal 70-646, 04510 México, D. F.
Get access

Abstract

Polymer dispersed liquid crystals (PDLC) are materials formed by nematic liquid crystals droplets with radii of a few hundred Å embedded in a polymer matrix. We discuss the use of relaxation methods for the study of the response of the director of a PDLC under the switching of an external electric field. We simulate the confining system by considering different boundary conditions at the droplet surface.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Doane, J. W., Polymer Dispersed Liquid Crystal Displays, Liquid Crystal-Applications and Uses, Vol. 1, ed. Bahadur, B. (Singapur: World Scientific, 1990) pp.361395.Google Scholar
2. Crawford, P. and Žumer, S., Liquid Crystals in Complex Geometries Formed by Polymer and Porous Networks, (Taylor and Francis, London, 1996).Google Scholar
3. Golemme, A., Žumer, S., Doane, J.W. and Neubert, M.E., Phys. Rev. A37, 559 (1988).Google Scholar
4. Ondris-Crawford, R., Boyeco, E.P., Wagner, B.G., Erdmann, J.H., Žumer, S. and Doane, J.W., J. Appl. Phys. 69, 6380 (1991).Google Scholar
5. Drzaic, P., Mol. Cryst. Liq. Cryst. 154, 289 (1988).Google Scholar
6. Aloe, R., Chidichimo, G. and Golemme, A., Mol. Cryst. Liq. Cryst. 203, 9 (1991).Google Scholar
7. Gennes, P. G. De, Prost, J., The Physics of Liquid Crystals, 2nd ed., (Oxford University Press, New York, 1993).Google Scholar
8. Wu, B. G., Erdmann, J. H. and Doane, J. W., Liq. Cryst. 5, 1453 (1989)Google Scholar
9. Amundson, K., Phys Rev. E53, 2412 (1996).Google Scholar
10. Maier, W. and Saupe, A., Z. Naturforsch. A14, 882 (1959); A15, 287 (1960).Google Scholar
11. Rapini, A. and Papoular, M., J. Phys. (France), Colloq. 30, C454 (1969).Google Scholar