Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-28T15:18:50.810Z Has data issue: false hasContentIssue false

Reflection High Energy Electron Diffraction and Atomic Force Microscopy Studies of MnxSc(1-x) Alloys Grown on MgO(001) Substrates by Molecular Beam Epitaxy

Published online by Cambridge University Press:  10 March 2011

Costel Constantin
Affiliation:
Department of Physics and Astronomy, James Madison University, Harrisonburg, VA 22801
Abhijit Chinchore
Affiliation:
Nanoscale & Quantum Phenomena Institute, Department of Physics and Astronomy, Ohio University, Athens, OH 45701
Arthur R. Smith
Affiliation:
Nanoscale & Quantum Phenomena Institute, Department of Physics and Astronomy, Ohio University, Athens, OH 45701
Get access

Abstract

The combination of the molecular beam epitaxy growth method with the in-situ reflection high energy electron diffraction measurements currently offers unprecedented control of crystalline growth materials. We present here a stoichiometric study of MnxSc(1-x) [x = 0, 0.03, 0.05, 0.15, 0.25, 0.35, and 0.50] thin films grown on MgO(001) substrates with this growth method. Reflection high energy electron diffraction and atomic force microscopy measurements reveal alloy behavior for all of our samples. In addition, we found that samples Mn0.10Sc0.90 and Mn0.50Sc0.50 display surface self-assembled nanowires with a length/width ratio of ~ 800 – 2000.

Keywords

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Drits, M.E., Toropova, L.S., and Gushchina, F.L., Metall. 4, 229 (1984).Google Scholar
[2] Okamoto, H., J. Phase Equilib. 18(4), 398 (1997).Google Scholar
[3] Cacciamani, G., Riani, P., Borzone, B., Parodi, N., Saccone, A., Ferro, R., Pisch, A., and Schmid-Fetzer, R., Intermetallics 7(1), 101 (1999).Google Scholar
[4] Oshima, T., Habaram, Y., and Kuroda, K., Mat. Science Forum 538-43, 4897 (2007).Google Scholar
[5] Gesmundo, J., deAsmundia, C., Battilana, G., and Ruedl, E., Werkstoffe und Korrosion 38, 367 (1987).Google Scholar
[6] Doulass, D., Gesmundo, F., and deAsmundi, C., Oxidation of Materials 25, 235 (1986).Google Scholar
[7] Buch, F. V., Mordike, B. L., Pisch, A., Schmid-Fetzer, R., Mater. Sci. and Eng. A A263, 1 (1999).Google Scholar
[8] Pisch, A., Schmid-Fetzer, R., Metallkde, Z.. 89, 700 (1998).Google Scholar
[9] Grobner, J., Pisch, A., Schmid-Fetzer, R., J. Alloys Comp. 317318, 433 (2001).Google Scholar
[10] Pisch, A., Hodaj, F., Chaudouet, P., Colinet, C., J. Alloys Comp. 319, 210 (2001).Google Scholar
[11] Yang, H., Smith, A. R., Prikhodko, M., and Lambrecht, W. R. L., Phys. Rev. Lett. 89, 226101 (2002).Google Scholar
[12] Yang, H., Yang, R., Smith, A. R., and Lambrecht, W. R. L., Surface Science 548, 117 (2003).Google Scholar
[13] Constantin, C., Wang, K., Chinchore, A., Smith, A. R., Chia, H-J, Markert, J., accepted to Mat. Res. Soc. Symp. Proc. Google Scholar