Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T02:51:52.685Z Has data issue: false hasContentIssue false

The Reduction of CuII Compounds by Excimer Laser Irradiation for Copper Metal Deposition

Published online by Cambridge University Press:  22 February 2011

M. Suys
Affiliation:
Departement de génie physique and Groupe des Couches Minces, Ecole Polytechnique de Montréal, Montréal, Québec, Canada, H3C 3A7.
B. Moffat
Affiliation:
Departement de génie physique and Groupe des Couches Minces, Ecole Polytechnique de Montréal, Montréal, Québec, Canada, H3C 3A7.
M.-H. Bernier
Affiliation:
Departement de génie physique and Groupe des Couches Minces, Ecole Polytechnique de Montréal, Montréal, Québec, Canada, H3C 3A7.
R. Izquierdo
Affiliation:
Departement de génie physique and Groupe des Couches Minces, Ecole Polytechnique de Montréal, Montréal, Québec, Canada, H3C 3A7.
S. Poulin
Affiliation:
Departement de génie physique and Groupe des Couches Minces, Ecole Polytechnique de Montréal, Montréal, Québec, Canada, H3C 3A7.
M. Meunier
Affiliation:
Departement de génie physique and Groupe des Couches Minces, Ecole Polytechnique de Montréal, Montréal, Québec, Canada, H3C 3A7.
Get access

Abstract

The short (UV) wavelength and the large beam cross-section of excimer lasers are expected to permit high resolution projection patterning and, for this reason, excimer laser deposition of Cu from organometallic precursors appears to be an interesting alternative for metallization in ULSI circuits. Unfortunately, the photolytic decomposition of those precursors leads to strong carbon contamination of the deposits. However, the valence state of the Cu in such deposits is unknown. In this paper, the reduction of two Cu (II) compounds, Cu(hmac)2 and Cu(hfac)2, under excimer laser irradiation in a hydrogen ambient is discussed. It is shown, with X-ray Photoelectron Spectroscopy, that, under our experimental conditions, Cu(hmac)2 is reduced to a Cu (I) compound while some of the Cu(hfac)2 appears to be reduced to the metallic state. Furthermore, reaction of the SiO2 substrate with the carbon from the Cu(hmac)2 precursor is observed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Gross, M.E. and Donnelly, V.M, Advanced Metallization for ULSI Applications, edited by Rana, V.V.S., Joshi, R.V. and Ohndomari, I. (MRS Symp. Proc. ULSI-VII), 355 (1992)Google Scholar
2. Welton, T., Prasad, J., Kelber, J.A., Lujan, R.D., Fleming, J., and Blewer, R.S., Advanced Metallization for ULSI Applications, edited by Rana, V.V.S., Joshi, R.V. and Ohndomari, I. (MRS Symp. Proc. ULSI-VII), 383 (1992)Google Scholar
3. Van Hemert, R.L., Spendlove, L.B., and Sievers, R.E., J. Electrochem. Soc, 112, 1123 (1965)Google Scholar
4. Dubois, L.H., Jeffries, P.M., and Girolami, G.S., Advanced Metallization for ULSI Applications, edited by Rana, V.V.S., Joshi, R.V. and Ohndomari, I. (MRS Symp. Proc. ULSI-VII), 375 (1992)Google Scholar
5. Awaya, N. and Arita, Y, Advanced Metallization for ULSI Applications, edited by Rana, V.V.S., Joshi, R.V. and Ohndomari, I. (MRS Symp. Proc. ULSI-VII), 345 (1992)Google Scholar
6. Cohen, S.L., Liehr, M., and Kasi, S., Appl. Phys. Lett, 60, 50 (1992)Google Scholar
7. Shin, H.K., Chi, K.M., Jain, A., Hampden-Smith, M.J., Kodas, T.T., Paffett, M.F. and Farr, J.D., Advanced Metallization for ULSI Applications, edited by Rana, V.V.S., Joshi, R.V. and Ohndomari, I. (MRS Symp. Proc. ULSI-VII), 403 (1992)Google Scholar
8. Beach, D.B., LeGoues, F.K., and Hu, C.-K., Chem. Mater., 2, 216 (1990)Google Scholar
9. Temple, D. and Reisman, A., J. Electrochem. Soc, 136, 3525 (1989)Google Scholar
10. Rees, W.S. Jr and Caballero, C.R., Adv. Mater. Opt. Electron., 1, 59 (1992)Google Scholar
11. Jain, A., Chi, K.-M., Kodas, T.T., Hampden-Smith, M.J., Farr, J.D., and Paffett, M.F., Chem. Mater., 3, 995 (1991)Google Scholar
12. Lecohier, B., Calpini, B., Philippoz, J.-M., and van den Bergh, H., J. Appl. Phys., 72, 2022 (1992)Google Scholar
13. Gross, M.E., J. Electrochem. Soc, 138, 2422 (1991)Google Scholar
14. Houle, F.A., Wilson, R.J., and Baum, T.H., J. Vac. Sci. Technol. A 4, 2452 (1986)Google Scholar
15. Jones, C.R., Houle, F.A., Kovac, C.A., and Baum, T.H., Appl. Phys. Lett., 46, 97 (1985)Google Scholar
16. Braichotte, D. and van den Bergh, H., Springer Series in Optical Science #48, 39 Google Scholar
17. Wilson, R.J. and Houle, F.A, Phys. Rev. Lett., 55, 2184 (1985)Google Scholar
18. Houle, F.A., Jones, C.R., Baum, T., Pico, C. and Kovac, C.A., Appl. Phys. Lett., 46, 204 (1985)Google Scholar
19. Moylan, C.R., Baum, T.H., and Jones, C.R., Appl. Phys., A40, 1 (1986)Google Scholar
20. Markwalder, B., Widmer, M., Braichotte, D., and van den Bergh, H., J. Appl. Phys., 65, 2470 (1989)Google Scholar
21. Mao, D.-M., Jin, Z.-K., and Qin, Q.-Z., J. Appl. Phys., 71, 6111 (1992)Google Scholar
22. Dupuy, C.G., Beach, D.B., Hurst, J.E. Jr, and Jasinski, J.M., Chem. Mater., 1, 16 (1989)Google Scholar
23. Han, J., Jensen, K.F. and Norman, J.A.T., MRS Symp. Proc. Vol. 236, 97 (1992)Google Scholar
24. Zhang, J.-Y and Esrom, H., Appl. Surf. Sci., 54, 465 (1992)Google Scholar
25. Ushida, T., Higashiyama, K., Hirabayashi, I., and Tanaka, S., Jap. J. Appl. Phys., 30, L35 (1991)Google Scholar