Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T01:57:58.200Z Has data issue: false hasContentIssue false

Real-time Monitoring of semiconductor growth by Spectroscopic ellipsometry

Published online by Cambridge University Press:  10 February 2011

B. Johs
Affiliation:
J.A. Woollam Co., Inc., 645 M St. #102, Lincoln, NE 68508, [email protected]
J. Hale
Affiliation:
J.A. Woollam Co., Inc., 645 M St. #102, Lincoln, NE 68508, [email protected]
C. Herzinger
Affiliation:
J.A. Woollam Co., Inc., 645 M St. #102, Lincoln, NE 68508, [email protected]
D. Doctor
Affiliation:
Hughes Research Labs, Malibu, CA
K. Elliott
Affiliation:
Hughes Research Labs, Malibu, CA
G. Olson
Affiliation:
Hughes Research Labs, Malibu, CA
D. Chow
Affiliation:
Hughes Research Labs, Malibu, CA
J. Roth
Affiliation:
Hughes Research Labs, Malibu, CA
I. Ferguson
Affiliation:
EMCORE Corp. Somerset, NJ
M. Pelczynski
Affiliation:
EMCORE Corp. Somerset, NJ
C. H. Kuo
Affiliation:
Arizona State University, Tempe, AZ
S. Johnson
Affiliation:
Arizona State University, Tempe, AZ
Get access

Abstract

in situ Spectroscopic Ellipsometry (SE) is an optical technique which is well suited for the monitoring of epitaxial semiconductor growth, due to its high surface sensitivity and non-invasive nature. In this work, SE systems were installed on both MBE and MOCVD deposition systems to monitor the epitaxial growth of InxGa1−xAs and InxAl1−xAs compounds on InP substrates. The structures grown include thick lattice matched In0.53Ga0.47As buffer layers (for HBT collectors), and strained RTD structures. SE was used to monitor in real-time layer composition and thickness during growth. To enhance the precision and accuracy of the SE determined growth parameters, it was necessary to optimize the SE data analysis strategies. A methodology to determine the best spectral region for the SE data analysis in the presence of noise and systematic effects (such as angle of incidence uncertainty, detector wavelength shifts, surface roughness, uncertainty in surface temperature, non-ideal growth modes, etc.) is presented. Using the optimized data analysis strategies, long term SE-determined InxGa1−�As composition accuracy (as verified by ex situ x-ray measurements) of ±0.002 in ‘x’ was achieved. SE thickness measurements of ultra-thin (<30Å) strained AlAs barrier layers were also in excellent agreement (±0.5Å) with real-time photo-emission oscillation measurements.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Azzam, R. M. A. and Bashara, N. M., Ellipsometry and Polarized Light, North-Holland, Amsterdam, 1977.Google Scholar
2. Woollam, J. A. and Snyder, P. G., “Variable Angle Spectroscopic Ellipsometry”, book chapter for Encyclopedia of Materials Characterization, Butterworth-Heinemann Publishers, Boston, 401 (1992).Google Scholar
3. Jellison, G. E. Jr, Thin Solid Films 234, p. 416 (1993).Google Scholar
4. Herzinger, C. M., Synder, P. G., Johs, B., and Woollam, J. A., J. Appl. Phys. 77, p. 1715 (1995).Google Scholar
5. Maracas, G. N., Edward, J. L., Shiralagi, K., Choi, K. Y., Droopad, R., Johs, B., and Woollam, J. A., J. Vac. Sci. Tech. A, 10 (1992), 1832.Google Scholar
6. Kuo, C. H., Anand, S., Droopad, R., Choi, K. Y., and Maracas, G. N., J. Vac. Sci. Tech. B, 12 (1994), 1214.Google Scholar
7. Herzinger, C., Johs, B., Chow, P., Reich, D., Carpenter, G., Croswell, D., and Hove, J. Van, Mat. Res. Soc. Symp. Proc., 406 (1996), 347.Google Scholar
8. Droopad, R., Kuo, C. H., Anand, S., Choi, K. Y., and Maracas, G. N., J. Vac. Sci. Tech. B, 12 (1994), 1211.Google Scholar
9. Aspnes, D. E., Quinn, W. E., Tamargo, M. C., Pudensi, M. A. A., Schwarz, S. A., Brasil, M. J. S. P., Nahory, R. E., and Gregory, S., Appl. Phys. Lett., 60 (1992), 1244.Google Scholar
10. Johs, B., Doerr, D., Pittal, S., Bhat, I. B., and Dakshinamurthy, S., Thin Solid Films, 233 (1993), 293.Google Scholar
11. Pickering, C., Thin Solid Films 206 (1991), 275.Google Scholar
12. Studna, A. A., Aspnes, D. E., Florez, L. T., Wilkens, B. J., Harbison, J. P., and Ryan, R. E., J. Vac. Sci. Tech. A, 7 (1989), 3291.Google Scholar
13. Johs, B., Thin Solid Films, 234 (1993), 395.Google Scholar
14. Nijs, J. M. M de and Silfhout, A. van, J. Opt. Soc. Am. A, 5 (1988), 773.Google Scholar
15. M-88 and M-44 in situ SE systems, J.A. Woollam Co., Lincoln, NE USA.Google Scholar
16. WVASE32 analysis software, J.A. Woollam Co., Lincoln, NE USA.Google Scholar
17. Aspnes, D. E., J. Vac. Sci. Tech. A, 14 (1996), 960.Google Scholar
18. Kim, S. and Collins, R. W., Appl. Phys. Lett. 67 (1995), 3010.Google Scholar
19. Kim, S., Burnham, J. S., Koh, J., Jiao, L., Wronski, C. R., and Collins, R. W., J. Appl. Phys. 80 (1996), 2420.Google Scholar
20. Synder, P. G., Woollam, J. A., Alterovitz, S. A., and Johs, B., J. Appl. Phys. 68, p.5925 (1990).Google Scholar
21. Kim, C. C., Garland, J. W., Raccah, P. M., Phys. Rev. B, 47 (1993), 1876.Google Scholar
22. DeLyon, T. J., Roth, J. A. and Chow, D. H., J. Vac. Sci. Technol. B15,329 (1997).Google Scholar
23. Celii, F. G., Kao, Y.-C., Moise, T. S., Woolsey, M., Harton, T. B. and Haberman, K., MRS Proc. 406 (1996), 365.Google Scholar