Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-28T09:15:42.540Z Has data issue: false hasContentIssue false

Real-time Investigations on the Formation of CuIn(S,Se)2 while annealing precursors with varying sulfur content

Published online by Cambridge University Press:  31 January 2011

Astrid Hölzing
Affiliation:
[email protected], Chair for Crystallography and Structural Physics, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
Roland Schurr
Affiliation:
[email protected], Chair for Crystallography and Structural Physics, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
Stefan Jost
Affiliation:
[email protected], AVANCIS GmbH & Co. KG, München, Germany
Jörg Palm
Affiliation:
[email protected], AVANCIS GmbH & Co. KG, München, Germany
Klaus Deseler
Affiliation:
[email protected], Department of Materials Science 6, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
Peter J. Wellmann
Affiliation:
[email protected], Department of Materials Science 6, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
Rainer Hock
Affiliation:
[email protected], Chair for Crystallography and Structural Physics, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
Get access

Abstract

CIS based chalcopyrite absorber materials are usually substituted in the cation and anion lattice to yield mixed pentanary crystals with the general composition Cu(In,Ga)(Se,S)2 to achieve an optimised adaptation of the semiconductor bandgap to the terrestrial solar spectrum. Real-time investigations during the annealing of stacked elemental layers (SEL) of sputtered metals Cu and In and evaporated chalcogens S and Se with varying ratios were performed by angle-dispersive time-resolved XRD (X-ray diffraction) measurements. After qualitative phase analysis the measured powder diagrams were quantitatively analysed by the Rietveld method, the phases formed determined and their reaction kinetics obtained. Ternary indium and copper sulfoselenides form by the sulfoselenisation of the intermetallic alloy yielding different educts for the chalcopyrite formation with varying sulfur content. For S/(S+Se) ≥ 0.5 the formation of the chalcopyrite CuIn(S,Se)2 is similar to the crystallisation path of CuInS2. With increasing amount of selenium (S/(S+Se) = 0.25) different ternary sulfoselenides contribute to the semiconductor formation. For small amounts of sulfur, i.e. S/(S+Se) ≤ 0.1, the chalcopyrite crystallisation proceeds comparable to the one observed for sulfur-free Cu-In-Se precursors. The formation of CuIn(S,Se)2 is accelerated and proceeds mainly after the peritectic decomposition of Cu(S,Se) to Cu2(S,Se). The sulfur content determines the crystallisation temperature of the semiconductor because Cu(S,Se) decomposes at higher temperatures with increasing sulfur. Upon heating S ↔ Se exchange reactions take place in the Cu-S-Se and Cu-In-S-Se system.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Karg, F. Probst, V. Harms, H. Rimmasch, J. Riedl, W. Kotschy, J. Holz, J. Treichler, R. Eibl, O. Mitwalsky, A. and Kiendl, A. Proceedings of the 23rd IEEE Specialists Conference, Louisville (1993) 41446.Google Scholar
2. Palm, J. Probst, V. Stetter, W. Toelle, R. Visbeck, S. Calwer, H. Niesen, T. Vogt, H. Hernandez, O. Wendl, M. and Karg, F. H. Thin Solid Films 451/452, 544551 (2004).Google Scholar
3. Meyer, N. Meeder, A. and Schmid, D. Thin Solid Films 515, 59795984 (2007).Google Scholar
4. Hergert, F. Hock, R. Weber, A. Purwins, M. Palm, J. and Probst, V. J. Phys. Chem. Solids 66(11), 19031907 (2005).Google Scholar
5. Brummer, A. Honkimäki, V., Berwian, P. Probst, V. Palm, J. and Hock, R. Thin Solid Films 437(1-2), 297307 (2003).Google Scholar
6. Wolf, D. Doctoral Thesis, University of Erlangen-Nürnberg, Germany, (1998).Google Scholar
7. Jost, Stefan, Hergert, Frank, Hock, Rainer, Voβ, Torsten, Schulze, Jörg, Kirbs, Andreas, Purwins, Michael, Probst, Volker and Palm, Jörg in Thin-Film Compound Semiconductor Photovoltaics–2007, edited by Gessert, Timothy, Durose, Ken, Heske, Clemens, Marsillac, Sylvain and Wada, Takahiro (Mater. Res. Soc. Symp. 1012, Warrendale, PA, 2007) pp. 335.Google Scholar
8. Jost, S. Schurr, R. Hölzing, A., Hergert, F. Hock, R. Purwins, M. Palm, J. Thin Solid Films 517, 21362139 (2009).Google Scholar
9. Jost, S. Doctoral Thesis, University of Erlangen-Nürnberg, Germany, (2008).Google Scholar
10. Hölzing, A., Schurr, R. Schäfer, H., Jäger, A., Jost, S. Palm, J. Deseler, K. Wellmann, P. Hock, R. Thin Solid Films 517, 22132217 (2009).Google Scholar
11. Klopmann, C. von, Djordjevic, J. Rudigier, E. Scheer, R. J. Cryst. Growth 289, 121133 (2006).Google Scholar
12. Djordjevic, J. Rudigier, E. Scheer, R. J. Cryst. Growth 294, 218230 (2006).Google Scholar
13. Klopmann, C. von, Djordjevic, J. Scheer, R. J. Cryst. Growth 289, 113120 (2006).Google Scholar
14. Djordjevic, J. Pietzker, C. Scheer, R. J. Phys. Chem. Sol. 64, 18431848 (2003).Google Scholar
15. Jost, S. Hergert, F. Hock, R. Purwins, M. Enderle, R. Z. Krist. Suppl. 23, 124 (2006).Google Scholar
16. Jost, S. Hergert, F. Hock, R. Purwins, M. Enderle, R. Phys. Stat. Sol. A 203(11), 25812587 (2006).Google Scholar
17. Vegard, L. Z. Phys. 5, 1726 (1921).Google Scholar
18. Pietzker, C. Doctoral Thesis, University Potsdam, Germany, (2003).Google Scholar