Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-26T08:37:02.505Z Has data issue: false hasContentIssue false

The Realization of Molecular Control Over Solid State Structure: Chemical Vapor Deposition of Gallium and Indium Sulfide Films

Published online by Cambridge University Press:  22 February 2011

Michael B. Power
Affiliation:
Department of Chemistry, Harvard University, Cambridge, MA 02138 NASA, Lewis Research Center, Cleveland, OH 44135
Andrew N. Macinnes
Affiliation:
Department of Chemistry, Harvard University, Cambridge, MA 02138 Gallia Inc., Weston, MA 02193
Aloysius F. Hepp
Affiliation:
NASA, Lewis Research Center, Cleveland, OH 44135
Andrew R. Barron*
Affiliation:
Department of Chemistry, Harvard University, Cambridge, MA 02138
*
* Author to whom all correspondence should be addressed.
Get access

Abstract

The chemical vapor deposition of cubic gallium sulfide and tetragonalindium sulfide films is reported. The structure of the deposited films was demonstrated to be defined not solely by thermodynamics, but bythe predesigned molecular motif of the precursor molecules. Analysis of the deposited films has been obtained by transmission electron microscopy (TEM), with associated energy dispersive X-ray analysis (EDX) and X-ray photoelectron spectroscopy (XPS).

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Manasevit, H.M., Appl. Phys. Lett. 12, 156 (1968).Google Scholar
2 Manasevit, H.M., J. Cryst. Growth 55, 1 (1981).Google Scholar
3 Meyerson, B.S., LeGoues, F.K., Nguyen, T.N., Harame, Tand D.L., Appl. Phys. Lett. 50, 113(1987).Google Scholar
4 Maclnnes, A.N., Cleaver, W.M., Barron, A.R., Power, M.B. and Hepp, A.F., Adv. Mater. Optics Electron 1, 229 (1992).Google Scholar
5 Maclnnes, A.N., Power, M.B., and Barron, A.R., Chem. Mater. 4, 11 (1992).Google Scholar
6 Landry, C.C., Cheatham, L. K., Maclnnes, A.N., and Barron, A.R., Adv. Mater. Optics Electron, 1, 3 (1992).Google Scholar
7 Maclnnes, A.N., Power, M.B., and Barron, A.R., unpublished resultsGoogle Scholar
8 Kabalkina, S., Losev, V.G., and Gasanly, N.M., Solid State Comm. 44, 1383 (1982).Google Scholar
9 Schubert, K., Dörre, E., and Gönzel, E., Naturwiss. 41, 488 (1954).Google Scholar
10 McGuire, G.E., Schweitzer, G.K., and Carlson, T.A., Inorg. Chem. 12, 2450 (1973).Google Scholar
11 (a) Hahn, H., Angew. Chem. 65, 538 (1953).Google Scholar
(b) Kuhn, A., and Chevy, A., Acta Cryst. B32, 983 (1976).Google Scholar
12 Pardo, M.P., and Flauhaut, J., Mat. Res. Bull. 22, 323 (1987).Google Scholar
13 See for example (a) Interante, L.V., Sigel, G., Garbauskas, M., Hejna, C., and Slack, G.A., Inorg. Chem. 28, 252 (1989).Google Scholar
(b) Suls, F.C., Interante, L.V., and Jiang, Z., Inorg. Chem. 29, 2899 (1990).Google Scholar
14 See for example: Gladfelter, W.L., Hwang, J.W., Phillips, E.C., Evans, J.F., Hanson, S.A., Sand Jensen, K.F., Mat, K.F.. Res. Soc. Symp. Proc. 204, 83 (1991).Google Scholar