Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-10T14:35:28.219Z Has data issue: false hasContentIssue false

Reactive Co-Evaporation of YBCO for 2G HTS Tapes

Published online by Cambridge University Press:  17 March 2011

Jonathan Storer
Affiliation:
Superconductivity Technology Center, Los Alamos National Laboratory, TA-3 4200 drop point 01U, Los Alamos, NM, 87545
Jens Hänisch
Affiliation:
Superconductivity Technology Center, Los Alamos National Laboratory, TA-3 4200 drop point 01U, Los Alamos, NM, 87545
Chris Sheehan
Affiliation:
Superconductivity Technology Center, Los Alamos National Laboratory, TA-3 4200 drop point 01U, Los Alamos, NM, 87545
Vladimir Matias
Affiliation:
Superconductivity Technology Center, Los Alamos National Laboratory, TA-3 4200 drop point 01U, Los Alamos, NM, 87545
Get access

Abstract

We present a new reel-to-reel method for growth of high temperature super-conducting (HTS) films by reactive co-evaporation on flexible metal tapes. We have demonstrated proof of principle for this method with a small laboratory-scale setup using 8 cm long tape pieces. YBa2Cu3O7-δ is deposited on ion-beam assisted deposition textured MgO layers on top of flexible polycrystalline metal tapes. Critical current densities at 75.5 K of over 2 MA/cm2 have been achieved in HTS films with over 2 μm in thickness, yielding a self field critical current of 450 A/cm-width. A 4.5 μm thick film had a self field critical current of 590 A/cm. We discuss some practical possibilities for manufacturing of superconducting wire using this process and present new areas of research that are still needed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Matijasevic, V., Bozovic, I., Current opinion in solid state & materials science 1, 4753 (1996).Google Scholar
2 Berberich, P., Assmann, W., Prusseit, W., Utz, B., Kinder, H., Journal of alloys and compounds 195, 271274 (1993).Google Scholar
3 Nemetschek, R., Prusseit, W., Holzapfel, B., Eickemeyer, J., DeBoer, B., Miller, U., Maher, E., Physica C 372–376, 880882 (2002).Google Scholar
4 Lee, B. S., Chung, K. C., Kim, S. M., Kim, H. J., Youm, D., Park, C., Superconductor science & technology 17, 580584 (2004).Google Scholar
5 Lindemer, T. B., Washburn, F. A., MacDougall, C. S., Feenstra, R., Cavin, O. B., Physica. C, Superconductivity 178, 93104 (1991).Google Scholar
6 Matias, V., Gibbons, B. J., Hänisch, J., Steenwelle, R. J. A., Dowden, P., Rowley, J., Coulter, J. Y., Peterson, D., IEEE Trans. Supercond. to be published (2007).Google Scholar