Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-12-01T02:13:35.275Z Has data issue: false hasContentIssue false

Reaction Anisotropy and Size Resolved Oxidation Kinetics of Zinc Nanocrystals

Published online by Cambridge University Press:  31 January 2011

Xiaofei Ma
Affiliation:
[email protected], University of Maryland-College Park, Mechanical Engineering, College Park, Maryland, United States
Michael R. Zachariah
Affiliation:
[email protected], University of Maryland-College Park, Mechanical Engineering, College Park, Maryland, United States
Get access

Abstract

In this work, size-classified substrate-free Zn nanocrystals (NCs) are prepared and investigated for their oxidation kinetics using an in-flight tandem ion-mobility method. The first mobility characterization size selects the NCs, while the second mobility characterization measures changes in mass resulting from a controlled oxidation of the NCs. This method allows for a direct measurement of mass change of individual particles and thus enables us to explore the intrinsic reactivity of NCs while minimizing the sampling error introduced by mass and heat transfer. Two reaction regimes were observed for Zn NC oxidation. A shrinking core model is used to extract the size-dependent oxidation activation energies. We also observed a strong anisotropy effect in the oxidation process as imaged by electron microscopy. An oxidation mechanism is proposed that qualitatively explains the oxidation anisotropy and its relationship to the surface energy of the Zn NCs.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

(1) Sutton, G. P. Rocket Propulsion Elements, 7th ed.; Wiley-Interscience, 2000.Google Scholar
(2) Laboratory, L. L. N. Science and Technology Review 1995.Google Scholar
(3) Steinfeld, A. International Journal of Hydrogen Energy 2002, 27, 611.10.1016/S0360-3199(01)00177-XGoogle Scholar
(4) Steinfeld, A. Solar Energy 2005, 78, 603.10.1016/j.solener.2003.12.012Google Scholar
(5) Abu Hamed, T.; Davidson, J. H.; Stolzenburg, M. Journal of Solar Energy Engineering-Transactions of the Asme 2008, 130.10.1115/1.2969808Google Scholar
(6) Ernst, F. O.; Tricoli, A.; Pratsinis, S. E.; Steinfeld, A. Aiche Journal 2006, 52, 3297.10.1002/aic.10915Google Scholar
(7) Wong, E. M.; Searson, P. C. Applied Physics Letters 1999, 74, 2939.10.1063/1.123972Google Scholar
(8) Tang, Z. K.; Wong, G. K. L.; Yu, P.; Kawasaki, M.; Ohtomo, A.; Koinuma, H.; Segawa, Y. Applied Physics Letters 1998, 72, 3270.10.1063/1.121620Google Scholar
(9) Pan, Z. W.; Dai, Z. R.; Wang, Z. L. Science 2001, 291, 1947.10.1126/science.1058120Google Scholar
(10) Wang, Z.; Harris, R. Materials Characterization 1993, 30, 155.10.1016/1044-5803(93)90019-RGoogle Scholar
(11) Kim, S.; Jeong, M. C.; Oh, B. Y.; Lee, W.; Myoung, J. M. Journal of Crystal Growth 2006, 290, 485.10.1016/j.jcrysgro.2006.01.043Google Scholar
(12) Wang, Y. G.; Lau, S. P.; Lee, H. W.; Yu, S. F.; Tay, B. K.; Zhang, X. H.; Hng, H. H. Journal of Applied Physics 2003, 94, 354.10.1063/1.1577819Google Scholar
(13) Lu, H. B.; Li, H.; Liao, L.; Tian, Y.; Shuai, M.; Li, J. C.; Fhu, M.; Fu, Q.; Zhu, B. P. Nanotechnology 2008, 19.Google Scholar
(14) Nakamura, R.; Lee, J. G.; Tokozakura, D.; Mori, H.; Nakajima, H. Materials Letters 2007, 61, 1060.10.1016/j.matlet.2006.06.039Google Scholar
(15) Zhou, L.; Rai, A.; Piekiel, N.; Ma, X. F.; Zachariah, M. R. Journal of Physical Chemistry C 2008, 112, 16209.10.1021/jp711235aGoogle Scholar
(16) Liu, B. Y. H.; Pui, D. Y. H. Journal of Colloid and Interface Science 1974, 49, 305.10.1016/0021-9797(74)90366-XGoogle Scholar
(17) Liu, B. Y. H. P., D. Y. H. J., Colloid Interface Sci. 1974, 47, 155.Google Scholar
(18) Knutson, E. O.; Whitby, K. T. Journal of Colloid and Interface Science 1975, 53, 493.10.1016/0021-9797(75)90067-3Google Scholar
(19) Ehara, K.; Hagwood, C.; Coakley, K. J. Journal of Aerosol Science 1996, 27, 217.10.1016/0021-8502(95)00562-5Google Scholar
(20) Rai, A.; Park, K.; Zhou, L.; Zachariah, M. R. Combustion Theory and Modelling 2006, 10, 843.10.1080/13647830600800686Google Scholar
(21) Levenspiel, O. Chemical Reaction Engineering, 3rd ed. ed.; John Wiley & Sons, 1999.Google Scholar