Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-26T08:36:25.186Z Has data issue: false hasContentIssue false

Rapid Thermal Annealing of GaAs/AlGaAs Coupled Double Quantum Wells

Published online by Cambridge University Press:  26 February 2011

Emil S. Koteles
Affiliation:
GTE Laboratories Incorporated, Waltham, MA 02254
B. Elman
Affiliation:
GTE Laboratories Incorporated, Waltham, MA 02254
C. A. Armiento
Affiliation:
GTE Laboratories Incorporated, Waltham, MA 02254
P. Melman
Affiliation:
GTE Laboratories Incorporated, Waltham, MA 02254
J. Y. Chi
Affiliation:
GTE Laboratories Incorporated, Waltham, MA 02254
R. J. Holmstrom
Affiliation:
GTE Laboratories Incorporated, Waltham, MA 02254
J. Powers
Affiliation:
GTE Laboratories Incorporated, Waltham, MA 02254
D. Owens
Affiliation:
GTE Laboratories Incorporated, Waltham, MA 02254
S. Charbonneau
Affiliation:
Simon Fraser University, Burnaby, B.C., Canada
M. L. W. Thewalt
Affiliation:
Simon Fraser University, Burnaby, B.C., Canada
Get access

Abstract

The effect of rapid thermal annealing (RTA) on the shapes of silicon dioxide capped symmetric coupled double GaAs/AlGaAs quantum wells (CDQW) has been investigated. In contrast to previous results on single quantum wells in which increases in exciton energies were observed after RTA, large decreases in exciton energies were seen in CDQWs. Furthermore, there was clear evidence, in the excitation spectrum and in increases in the lowest energy exciton lifetime, of asymmetry present in the heterostructure after RTA.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Laidig, W., Holonyak, N. Jr, Camras, M., Hess, K., Coleman, J.J., Dapkus, P.D., and Bardeen, J., AppL. Phys. Lett. 38, 776 (1981), N. Holonyak, Jr., W.D. Laidig, M.D. Camras, J.J. Coleman, P.D. Dapkus, AppL. Phys. Lett. 39, 102 (1981).CrossRefGoogle Scholar
2 Ralston, J.D., O'Brien, S., Wicks, G.W., and Eastman, L.F., Appl. Phys. Lett. 52, 1151 (1988).CrossRefGoogle Scholar
3 Koteles, E., Elman, B., Holmstrom, R., Melman, P., Chi, J., Wen, X., Powers, J., Owens, D., Charbonneau, S., and Thewalt, M., to be published in Superlattices and Microstructures. Google Scholar
4 Iwamura, H., Saku, T., and Okamoto, H., Jpn. J. Appl. Phys. 24, 104 (1985).CrossRefGoogle Scholar
5 Chen, Y.J., Koteles, Emil S., Elman, B.S., and Armiento, C.A., Phys. Rev. B36, 4562 (1987).CrossRefGoogle Scholar
6 Charbonneau, S., Thewalt, M., Koteles, E. S., and Elman, B., Phys. Rev. B38, 6287 (1988).CrossRefGoogle Scholar
7 Koteles, Emil S., Chen, Y.J., and Elman, B.S., in Excitons in Confined Systems, Proceedings of the International Meeting, Rome, Italy, 1987, ed. by Del Sole, R., D'Andrea, A., and Lapiccirella, A., (Springer-Verlag, Berlin, 1988), page 244.Google Scholar