Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T11:04:26.315Z Has data issue: false hasContentIssue false

Raman Study of Single Wall Carbon Nanotube Doped by Alkali Metals

Published online by Cambridge University Press:  15 March 2011

N. Bendiab
Affiliation:
Groupe de Dynamique des Phases Condensées, UMR CNRS 5581, Université Montpellier II, 34095 Montpellier cedex 5, France
E. Anglaret
Affiliation:
Groupe de Dynamique des Phases Condensées, UMR CNRS 5581, Université Montpellier II, 34095 Montpellier cedex 5, France
A. Righi
Affiliation:
Groupe de Dynamique des Phases Condensées, UMR CNRS 5581, Université Montpellier II, 34095 Montpellier cedex 5, France
J.L. Sauvajol
Affiliation:
Groupe de Dynamique des Phases Condensées, UMR CNRS 5581, Université Montpellier II, 34095 Montpellier cedex 5, France
Get access

Abstract

Single wall carbon nanotube (SWNT) doped by alkali-metals are investigated by Raman scattering. For saturation-doped compounds, the most striking intrinsic features are two low-frequency peaks assigned to modes involving both radial motions of tubes and alkali-atoms vibrations. On the other hand, the evolution of the Raman spectra with doping was studied in-situ. Two different stable phases are identified and associated to distinct organizations of the tubes and of the alkali-atoms.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Lee, R.S., Kim, H.J., Fischer, J.E., Thess, A., Smalley, R.E., Nature 388, 255 (1997).Google Scholar
[2] Clayes, A., Nemes, N.M., Janossy, A., Fischer, J.E., Phys Rev B 62, R4845 (2000).Google Scholar
[3] Bower, C., Suzuki, S., Tanigaki, K., Zhou, O., Appl. Phys. A 67, 47 (1998).Google Scholar
[4] Duclaux, L., Metenier, K., Salvetat, J.P., Lauginie, P., Bonnamy, S.. Beguin, F., Mol. Cryst. and Liq. Cryst. 34, 769 (2000).Google Scholar
[5] Rao, A. M., Eklund, P.C., Bandow, S., Thess, A., Smalley, R.E., Nature 388, 257 (1997)Google Scholar
[6] Bendiab, N., Spina, L., Zahab, A., Poncharal, P., Marlière, C., Bantignies, J.L., Anglaret, E., Sauvajol, J.L, Phys. Rev. B, in press.Google Scholar
[7] Bendiab, N. et al. , to be published.Google Scholar
[8] Kazaoui, S., Minami, N., Jacquemin, R., Kataura, H., Achiba, Y., Phys. Rev. B 60, 13339 (1999).Google Scholar
[9] Journet, C. et al. , Nature 388, 756 (1997).Google Scholar
[10] Rols, S., Almairac, R., Henrard, L., Anglaret, E., Sauvajol, J.L., Euro. Phys. J. B 10, 263 (1999).Google Scholar
[11] Rols, S. et al. , Euro. Phys. J. B 18, 201 (2000).Google Scholar
[12] Kataura, H., Kumazawa, Y., Maniwa, Y., Umezu, I., Suzuki, S., Ohtsuka, Y., Achiba, Y., Synth. Metals 103, 2555 (1999).Google Scholar
[13] Pimenta, M.A et al. , Phys. Rev. B 58, R16016 (1998).Google Scholar
[14] Alvarez, L., Righi, A., Guillard, T., Rols, S., Anglaret, E., Laplaze, D., Sauvajol, J.L., Chem. Phys. Lett. 316, 186 (2000).Google Scholar