Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-12-01T03:13:43.406Z Has data issue: false hasContentIssue false

Raman Spectroscopy of Graphitic Foams

Published online by Cambridge University Press:  01 February 2011

Eduardo B. Barros
Affiliation:
Departamento de Física, Universidade Federal do Ceará, Fortaleza, CE, Brazil. Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA.
Nasser S. Demir
Affiliation:
Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA.
Antonio G. Souza Filho
Affiliation:
Departamento de Física, Universidade Federal do Ceará, Fortaleza, CE, Brazil.
Josué Medes Filho
Affiliation:
Departamento de Física, Universidade Federal do Ceará, Fortaleza, CE, Brazil.
Ado Jorio
Affiliation:
Departamento de Física, Universidade Federal de Minas Gerais, Belo-Horizonte, MG, Brazil.
Gene Dresselhaus
Affiliation:
Francis Bitter Magnet Lab, Massachusetts Institute of Technology, Cambridge, MA, USA.
Mildred S. Dresselhaus
Affiliation:
Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA. Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
Get access

Abstract

To better understand the very high thermal conductivity to weight ratio of the graphitic foams recently developed at the Oak Ridge National Laboratory, a Raman spectroscopy study was performed. It was also shown that the Raman scattering can be useful for the characterization of the graphitic foam, being able to evaluate the quality of the samples with respect to the density and location of lattice defects.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Klett, J., Hardy, R., Romine, E., Walls, C., and Burchell, T., Carbon 38, 953 (2000).Google Scholar
2. Sihn, S. and Roy, A. K., J. Mech. Phys. Solids 52, 167 (2004).Google Scholar
3. Barros, E. B., Demir, N. S., Souza Filho, A. G., Mendes Filho, J., Jorio, A., Dresselhaus, G. and Dresselhaus, M. S., Submitted Google Scholar
4. Klett, J. W., McMillan, A. D., Gallego, N. C., and Walls, C. A., J. Mat. Sci. 39, 3659 (2004).Google Scholar
5. Thomsen, C. and Reich, S., Phys. Rev. Lett. 85, 5214 (2000).Google Scholar
6. Cançado, L. G., Pimenta, M. A., Saito, R., Jorio, A., Ladeira, L. O., Grüneis, A., Souza Filho, A. G., Dresselhaus, G., and Dresselhaus, M. S., Phys. Rev. B 66, 035415 (2002).Google Scholar
7. Kawashima, Y. and Katagiri, G., Phys. Rev. B 66, 104109 (2002).Google Scholar
8. Saito, R., Jorio, A., Souza Filho, A. G., Dresselhaus, G., Dresselhaus, M. S., and Pimenta, M. A., Phys. Rev. Lett. 88, 027401 (2002).Google Scholar
9. Tan, P. H., Hu, C. Y., Dong, J., Shen, W., and Zhang, B., Phys. Rev. B 64, 214301 (2001).Google Scholar
10. Cançado, L. G., Pimenta, M. A., Neves, B. R. A., Medeiros-Ribeiro, G., Enoki, T., Kobayashi, Y., Takai, K., Fukui, K., Dresselhaus, M. S., Saito, R., et al., Phys. Rev. Lett. 93, 047403 (2004).Google Scholar