Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-27T03:13:51.841Z Has data issue: false hasContentIssue false

Radiolytic Synthesis of Bimetallic Nanoparticles with High Aspect Ratio

Published online by Cambridge University Press:  11 February 2011

C. M. Doudna
Affiliation:
Department of Physics, University of Missouri-Rolla, Rolla, MO 65409
M. F. Bertino
Affiliation:
Department of Physics, University of Missouri-Rolla, Rolla, MO 65409
S. Pillalamarri
Affiliation:
Department of Chemistry, University of Missouri-Rolla, Rolla, MO 65409
F. D. Blum
Affiliation:
Department of Chemistry, University of Missouri-Rolla, Rolla, MO 65409
A. T. Tokuhiro
Affiliation:
Department of Nuclear Engineering, University of Missouri-Rolla, Rolla, MO 65409
S. Chattopadhyay
Affiliation:
Biological, Chemical, and Physical Sciences, Illinois Institute of Technology, Chicago, IL 60616
J. Terry
Affiliation:
Biological, Chemical, and Physical Sciences, Illinois Institute of Technology, Chicago, IL 60616
Get access

Abstract

We present a technique to synthesize high aspect ratio metallic nanostructures based on the radiolysis method. In our experiments, we use gamma rays to irradiate aqueous solutions containing Ag and Pt ions and a water-soluble polymer. The aspect ratio of the nanoparticles is controlled by varying the radiation dose rate, the type of polymer, and the type of counter ions. Transmission electron microscopy shows that wire-like structures composed of grains with a face centered cubic (fcc) structure can be formed with a length of up to 3.5μm and typical diameters between 5 and 12nm. X-Ray absorption spectroscopy shows that Ag and Pt do not form an alloy, but remain segregated.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1) Nicewarner-Pena, S.R., Freeman, R.G., Reiss, B.D., He, L., Pena, D.J., Walton, I.D., Cromer, R., Keating, C.D., Natan, M.J., Science 294, 137 (2001).Google Scholar
(2) Fukuoka, A., Higashimoto, N., Sakamoto, Y., Inagaki, S., Fukushima, Y., Ichikawa, M., Topics in Catalysis 18, 73 (2000).Google Scholar
(3) Filankembo, A., Pileni, M.P., J. Phys. Chem. B. 104, 5866 (2000).Google Scholar
(4) Pileni, M.P., Langmuir 13, 3266 (1997).Google Scholar
(5) Zhang, D., Qi, L., Ma, J., Cheng, H., Chem. Mater. 13, 2753 (2001).Google Scholar
(6) Jana, N.R., Gearheart, L., Murphy, C.J., Chem. Mater. 13, 2313 (2001).Google Scholar
(7) Murphy, C.J., Jana, N.R., Adv. Mater. 14, 80 (2002).Google Scholar
(8) Jana, N.R., Gearheart, L., Murphy, C.J., J. Phys. Chem. B. 105. 4065 (2001).Google Scholar
(9) Sun, Y., Gates, B., Mayers, B., Xia, Y., Nanoletters 2, 165 (2002).Google Scholar
(10) Zhou, Y., Yu, S.H., Wang, C.Y., Li, X.G., Zhu, Y.R., Chen, Z.Y., Adv. Mater. 11, 850 (1999).Google Scholar
(11) Belloni, J., Mostafavi, M., Remita, H., Marignier, J.L., Delcourt, M.O., New J. Chem. 1239 (1998).Google Scholar
(12) Treguer, M., de Cointet, C., Remita, S., Khatouri, M., Mostafavi, M., Amblard, J., Belloni, J., J. Phys. Chem. B. 102, 4310 (1998).Google Scholar
(13) Remita, H., Mostafavi, M., Delcourt, M.O., Radiat, . Phys. Chem. 47, 275 (1996).Google Scholar
(14) Henglein, A., Israel J. Chem. 33, 77 (1993).Google Scholar
(15) Newville, M., Ravel, B., Haskel, D., Rehr, J.J., Stern, E.A., Yacobi, Y., Physica B 208 & 209, 154 (1998).Google Scholar
(16) Dalba, G., Fornasini, P., Grisenti, R., Pasqualini, D., Diop, D., Monti, F., Phys. Rev. B 58, 4793 (1995).Google Scholar
(17) Rossner, H., Krappe, H.J., Syn. Rad. 8, 261 (2001).Google Scholar
(18) Torigoe, K., Nakajima, Y., Esumi, K., J. Phys. Chem. 97, 8304 (1993).Google Scholar
(19) Okazaki, Y., Ishizuki, K., Kawauchi, S., Satoh, M., Komiyama, , J. Macromolecules 29, 8391 (1996).Google Scholar
(20) Colfen, H., Macromol. Rapid Commun. 22, 219 (2001).Google Scholar