Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-24T16:05:18.583Z Has data issue: false hasContentIssue false

Radiological Control of Gold Octahedral and Prism Nanoparticles

Published online by Cambridge University Press:  01 February 2011

Tina M. Nenoff
Affiliation:
[email protected], Sandia National Laboratories, Surface and Interface Science, PO Box 5800, MS 1415, Albuquerque, NM, 87185-1415, United States
Jason C. Jones
Affiliation:
[email protected], Sandia National Laboratories, Surface and Interface Science, PO Box 5800, MS 1415, Albuquerque, NM, 87185-1415, United States
Paula P. Provencio
Affiliation:
[email protected], Sandia National Laboratories, Radiation-Solid Interactions, PO Box 5800, MS 1421, Albuquerque, NM, 87185-1421, United States
Donald T. Berry
Affiliation:
[email protected], Sandia National Laboratories, Hot Cells and Gamma Facilities, PO Box 5800, MS 1143, Albuquerque, NM, 87185-1143, United States
Get access

Abstract

We report on a fundamental morphology growth of gold-based nanoparticles by solution radiolysis. Radiolysis of pure gold-polymer solutions of different dose rates and aging time is examined. A detailed description will be presented of the experimentation, testing and analysis. In particular, we will present data on the formation of gold nano-octahedra and -prism particles. The γ-irradiations were carried out with a 60Co source of 1.345 × 105 Ci (Sandia National Laboratories Gamma Irradiation Facility (GIF). Nanoparticle characterization techniques included are UV-vis and TEM. Similar to what has been seen in earlier silver nanoparticle studies, dose rate dictates the size of nanoparticles formed. At high dose rate, all reducing species are produced and scavenged within a short time, and then coalesce into separate nanoparticles. At low dose rate, the coalescence process is faster than the production rate of the reducing radicals. The reduction of radicals occurs mainly on clusters already formed. The differences in the morphologies result from a combination of dose rate, aging and lack of radical scavengers (e.g. isopropyl alcohol), resulting in either gold nano-spheres, octahedral or prism nanoparticles. The progressive evolution with dose rate of the UV-visible absorption spectra of radiation-induced metal clusters is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] (a) Bauer, L. A.; Birenbaum, N. S.; Meyer, G. J. J. Mater. Chem. 2004, 14, 517. (b) Bruchez, M.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P. Science 1998, 281, 2013. (c) Nam, J. M.; Thaxton, C. S.; Mirkin, C. A. Science 2003, 301, 1884. (d) Han, M. Y.; Gao, X. H.; Su, J. Z.; Nie, S. Nat. Biotechnol. 2001, 19, 631. (e) Rosi, N.L.; Mirkin, C.A. Chem. Rev., 2005, 105(4), 1247.Google Scholar
[2] (a) Jana, N. R.; Pal, T. Langmuir 1999, 15, 34583463. (b) Jana, N. R.; Sau, T. K.; Pal, T. J. Phys. Chem. B 1999, 103, 115. (c) Ghosh, S. K.; Kundu, S.; Mandal, M.; Pal, T. Langmuir 2002, 18, 8756.Google Scholar
[3] (a) Sun, S. H.; Murray, C. B.; Weller, D.; Folks, L.; Moser, A. Science 2000, 287, 1989. (b) Wang, J. F.; Gudiksen, M. S.; Duan, X. F.; Cui, Y.; Lieber, C. M. Science 2001, 293, 1455.Google Scholar
[4] (a) Jin, R.; Cao, Y.; Mirkin, C.A.; Kelly, K.L.; Schatz, G.C.; Zheng, J.G. Science 2001, 294, 1901. (b) Sun, Y.; Mayers, B.; Xia, Y. Nano Lett. 2003, 3, 675. (c) Jin, R.C.; Cao, Y.C.; Hao, E.C.; Metraux, G.S.; Schatz, G.C.; Mirkin, C.A. Nature 2003, 425, 487. (d) Letsinger, D.L.; Mucic, R.R.; Storhoff, J.J.; Mirkin, C.A. Nature 1996, 382, 607. (f) Li, D.; Shuford, K.L.; Park, Q.H.; Cai, W.; Li, Y. Lee, E.J.; Cho, S.O. Angew. Chem. Int. Ed. 2007, 46, 3264.Google Scholar
[5] Link, S.; El-Sayed, M. A. J. Phys. Chem. B 1999, 103, 8410.Google Scholar
[6] (a) Millstone, J.E.; Park, S.; Shuford, K. L.; Qin, L., Schatz, G.C.; Mirkin, C. A. J. Am. Chem. Soc. 2005, 127, 5312. (b) Millstone, J.E.; Metraux, G.S., Mirkin, C.A. Adv. Funct. Mater. 2006, 16, 1209.Google Scholar
[7] (a) Henglein, A. J.Phys. Chem. 1993, 97, 5457. (b) Henglein, A. Isr. J. Chem. 1993, 33, 77. (c) Henglein, A. Ber. Bunsen-Ges. Phys. Chem. 1995, 99(9), 903. (d) Henglein, A. Ber. Bunsen-Ges. Phys. Chem. 1997, 101, 1562.Google Scholar
[8] Mulvaney, P. Langmuir 1996, 12, 788.Google Scholar
[9] Remita, S.; Mostafavi, M.; Delcourt, M. O. Radiat. Phys. Chem. 1996, 47, 275.Google Scholar
[10] (a) Henglein, A. J. Phys. Chem. 1979, 83, 2209. (b) Henglein, A.; Lilie, J. J. Am. Chem. Soc. 1981, 103, 1059.Google Scholar
[11] Meisel, D. J. Am. Chem. Soc. 1979, 101, 6133.Google Scholar
[12] Henglein, A.; Meisel, D. J. Phys. Chem. 1998, 102, 8364.Google Scholar
[13] Belloni, J.; Khatouri, J.; Mostafavi, M.; Amblard, J. IS&T's 48th Annual Conference Proceedings, 1995, 315.Google Scholar
[14] Henglein, A.; Meisel, D. Langmuir, 1998, 14, 7392.Google Scholar
[15] Belloni, J.; Mostafavi, M.; Remita, H.; Marignier, J-L.; Delcourt, M.-O. New J. Chem., 1998, 22, 1239.Google Scholar
[16] Belloni, J. Catalysis Today 2006, 113, 141.Google Scholar
[17] Belloni, J.; Mostafavi, M., in Jonah, C.D., Rao, M. (Eds.), Studies in Physical and Theoretical Chemistry 87. Radiation Chemistry: Present Status and Future Trends, Elsevier, 2001, p. 411.Google Scholar