Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-02T23:12:05.019Z Has data issue: false hasContentIssue false

Radiation-Hardened Optical Fibers for High Dosage Space Applications

Published online by Cambridge University Press:  15 February 2011

A. E. Miller
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
M. F. Yan
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
H. A. Watson
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
K. T. Nelson
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
Get access

Abstract

Hydrogen doping of optical fibers has been examined as an approach to increase the radiation hardness of optical fibers for high dosage (107 rad) space applications. A systematic study has been performed on 4 types of optical fibers designed to operate at 1.31 and 1.55 μm and doped with up to 8200 ppm H2. For low dosages, the most significant reductions m radiation-induced losses were obtained with low H2 concentrations (<10 ppm). Spectral loss measurements for hydrogen-doped fibers containing GeO2 show a radiation-induced loss peak at 1.45 μm and a broad absorption band around 0.6–0.8 μm. These bands are not observed in the pure silica-core fibers.

Fibers were fabricated to permanently trap 2.7 ppm H2 and the radiation-induced losses in these fibers are 35 to 85% that of the untreated fibers. Experimental data are used to delineate the γ-T-α operating limits which define the maximum gamma radiation (γ) dosages at different temperatures (T) while still meeting a requirement of α<150 dB/km. Among the four fiber types, hydrogen-doped silicacore fibers show the widest operating range and smallest radiation-induced loss for space applications. However, hydrogen-doped fibers with moderately high GeO2-doped core offer the best tradeoff between the bending and radiation-induced losses.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Faile, S.P. and Roy, D.M., Mat. Res. Bull. Vol.5 (1970) 385390.10.1016/0025-5408(70)90076-0Google Scholar
2. Shelby, J.E., Comm. Amer. Cer. Soc. (1984) C-9394.Google Scholar
3. Klein, K.-F., Muhlich, A., Worner, K.H., Henschel, H., Kohn, O., and Schmidt, H.U., SPIE Vol.867 (1987) 1724.Google Scholar
4. Evans, B.D., IEEE Trans. Nucl. Sci. 35 (1988) 12151220.10.1109/23.25442Google Scholar
5. Evans, B.D., Mat. Res. Soc. Symp. Proc. Vol.152 (1989) 245250.10.1557/PROC-152-245Google Scholar
6. Evans, B.D., SPIE Vol.992 (1988) 120128.Google Scholar
7. lino, A. and Tamura, J., J. Lightwave Tech. 6 (1988) 145149.10.1109/50.3981CrossRefGoogle Scholar
8. Nagasawa, K., Yutaka, H., Ohki, Y., Yahagi, K., Japanese Joumal of Applied Physics, Part 1, Vol.24 (1985) 12241228.10.1143/JJAP.24.1224Google Scholar
9. Wei, T., Singh, M.P., Miniscalco, W.J., and Wall, J.A., SPIE Vol.721 (1986) 3236.Google Scholar
10. Wei, T., Singh, M.P., Miniscalco, W.J., Wall, J.A., Mat. Res. Soc. Symp. Proc. Vol.88 (1987) 207215.10.1557/PROC-88-207Google Scholar
11. Itoh, H., Shimizu, M., Ohmori, Y., and Nakahara, M., J. Non-Cryst Sol. 70 (1985) 439443.10.1016/0022-3093(85)90112-7Google Scholar
12. Itoh, H., Ohmori, Y., and Nakahara, M., J. Lightwave Tech. Vol. LT–4 (1986) 473477.10.1109/JLT.1986.1074742CrossRefGoogle Scholar
13. Itoh, H., Shimizu, M., Ohmori, Y., and Nakahara, N., J. Lightwave Tech. Vol LT-5 (1987) 134139.10.1109/JLT.1987.1075413Google Scholar
14. Oe, M., Wanatabe, M., Tanaka, G., Tsunehisa, K., Chigusa, Y., Yoshiki, I., and Ishiguro, Y., Japanese Patent 01279207 (1989).Google Scholar
15. Huff, R.G., DiMarcello, F.V., SPIE Vol.867 (1987) 4045.Google Scholar
16. Lemaire, P.J., Walker, K.L., Kranz, K.S., Huff, R.G., and DiMareello, F.V., Mat. Res. Symp. Proc. 172 (1990) 8596.10.1557/PROC-172-85Google Scholar
17. Shackleford, J.F., Studt, Perry L., and Fulrath, R.M., J. Appl. Phys. 43 (1972) 16191626.10.1063/1.1661371Google Scholar
18. Namihara, Y., Mochizuki, K., and Kuwazura, M., Optics Lett 9 (1984) 426428.10.1364/OL.9.000426Google Scholar
19. Shelby, J.E., J. Appl. Phys. 48 (1977) 33873394.10.1063/1.324180Google Scholar
20. Lemaire, P.J., Optical Engineering 30 (1991) 780788.10.1117/12.55865CrossRefGoogle Scholar
21. Kaiser, P., Appl. Phys. Lett. 23 (1973) 4546.10.1063/1.1654732Google Scholar
22. Bagley, B.G., Kurkjian, C.R., Mitchell, J.W., Peterson, G.E., and Tynes, A.R., Optical Fiber Telecommunications, Eds. Miller, S.E. and Chynoweth, A.G., Academic Press (1979) pp. 167231.10.1016/B978-0-12-497350-3.50013-3Google Scholar
23. Kalormiris, V.E., Private Communication.Google Scholar