Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-27T02:50:54.519Z Has data issue: false hasContentIssue false

Quantum Diffusion of H(D) In Semiconductors and Metals, and The Role of the Interaction with Impurities

Published online by Cambridge University Press:  10 February 2011

G. Cannelli
Affiliation:
Dip. di Fisica, Università della Calabria, I-87036 Aracavacata di Rende (CS), Italy, and INFM.
R. Cantelli
Affiliation:
Dip. di Fisica, Univ. di Roma “La Sapienza”, P. le A. Moro 2, I- 00185 Roma, Italy, and INFM.
F. Cordero
Affiliation:
CNR, Area di Ricerca Roma-Tor Vergata, Istituto di Acustica “O.M. Corbino”, Via Fosso del Cavaliere, I-00133 Roma, Italy, and INFM.
E. Giovine
Affiliation:
Dip. di Fisica, Univ. di Roma “La Sapienza”, P. le A. Moro 2, I- 00185 Roma, Italy, and INFM.
F. Trequattrini
Affiliation:
Dip. di Fisica, Univ. di Roma “La Sapienza”, P. le A. Moro 2, I- 00185 Roma, Italy, and INFM.
Get access

Abstract

The mobility of hydrogen and its isotopes in metals has been the object of investigation for several years, whereas the diffusion studies of H in doped semiconductors started more recently. Although the H diffusion coefficient in metals may be several orders of magnitudes higher than in semiconductors, the dynamics of H in metals and semiconductors presents many common features, like precipitation, trapping by heavier impurities and, as indicated by recent results, quantum tunneling at low temperature.

In boron doped silicon, the relaxation rates τ−1(T) of H around B obtained from anelastic relaxation were joined with those from infrared absorption: the remarkably wide range obtained (11 decades) clearly shows a deviation of τ−1(T) from the classical dependence at low temperature. However, the results obtained and their analysis do not allow yet to draw conclusions on the mechanism governing the H(D) dynamics.

Recently, the investigation of the dynamics of H(D) in GaAs doped with Zn revealed a dissipation peak at 20 K in the kHz range. This relaxation has the highest rate found for H in a semiconductor: more than 15 orders of magnitude higher than in all the other semiconductors measured so far. The analysis of the dissipation curves clearly indicates that the nature of the H reorientation is quantistic.

In metals two regimes of the H mobility are observed: hopping with deviations from a classical Arrhenius motion, and a much faster tunneling within few close sites. In the latter regime the H dynamics does not consist of jumps but of transitions between the quantized energy levels of the tunnel systems. The types of interactions assisting the H transitions and the geometry of the tunnel systems are an open problem: although the two-level tunnel system (TLS) has been widely used to explain neutron diffusion, specific heat, and acoustic spectroscopy results in interstitial solutions (NbOxHy), recently this model has appeared not to be valid in substitutional solutions (NbZrxHy, NbTixHy) where the tunnel systems have a higher symmetry. The four-level systems seem to be more appropriate, although the corresponding model has not been developed as much as the TLS yet.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Zapp, P. E. and Birnbaum, H. K., Acta Metall. 28, 1523 (1980).Google Scholar
2. Sellers, G. J., Anderson, A. C. and Birnbaum, H. K., Phys. Rev. B 10, 2771 (1974).Google Scholar
3. Morkel, C., Wipf, H. and Neumaier, K., Phys. Rev. Lett. 40, 947 (1978); H. Wipf and K. Neumaier, ibid., 52, 1308 (1984).Google Scholar
4. Wipf, H., Magerl, A., Shapiro, S. M., Satija, S. K. and Thomlinson, W., Phys. Rev. Lett. 46, 947 (1981).Google Scholar
5. Magerl, A., Dianoux, A. J., Wipf, H., Neumaier, K. and Anderson, I. S., Phys. Rev. Lett. 56, 159 (1986).Google Scholar
6. Steinbinder, D., Wipf, H., Dianoux, A. J., Magerl, A., Neumaier, K., Richter, D. and Hempelmann, R., Europhys. Lett. 16, 211 (1991).Google Scholar
7. Poker, D. B., Setser, G. C., Granato, A. V. and Birnbaum, H. K., Z. Phys. Chem. 116, 39 (1979).Google Scholar
8. Poker, D. B., Setser, G. C., Granato, A. V. and Bimbaum, H. K., Phys. Rev. B 29, 622 (1984).Google Scholar
9. Cannelli, G. and Cantelli, R., Solid State Comm. 43, 567 (1982).Google Scholar
10. Cannelli, G., Cantelli, R. and Cordero, F., Phys. Rev. B 34, 7721 (1986).Google Scholar
11. Morr, W., M¨ller, A., Weiss, G., Wipf, H. and Golding, B., Phys. Rev. Lett. 63, 2084 (1989).Google Scholar
12. Jäckle, J., Piché, L., Arnold, W. and Hunklinger, S., J. Non-Crystalline Solids 20, 365 (1976).Google Scholar
13. Cannelli, G. and Cantelli, R., Cordero, F. and Trequattrini, F., Z. Phys. Chem. 179, 317 (1993); G. Cannelli, R. Cantelli and G. Vertechi, Appl. Phys. Lett. 39, 832 (1981).Google Scholar
14. Neumaier, K., Wipf, H., Cannelli, G. and Cantelli, R., Phys. Rev. Lett. 49, 1423 (1982).Google Scholar
15. Cannelli, G., Cantelli, R., Cordero, F. and Trequattrini, F., Phys. Rev. B 49, 15040 (1994).Google Scholar
16. Stavola, M., Bergman, K., Pearton, S. J., and Lopata, J., Phys. Rev. Lett. 61, 2786 (1988).Google Scholar
17. Cannelli, G., Cantelli, R., Capizzi, M., Coluzza, C., Cordero, F., Frova, A., and Presti, A. Lo, Phys. Rev. B 44, 11486 (1991).Google Scholar
18. Cheng, Y. M. and Stavola, M., Phys. Rev. Lett. 73, 3419 (1994).Google Scholar
19. Flynn, C. P. and Stoneham, A. M, Phys. Rev B 1, 3966 (1970).Google Scholar
20. Cannelli, G., Cantelli, R., Cordero, F., Giovine, E., Trequattrini, F., Capizzi, M., and Frova, A., Solid State Comm. 98, 873 (1996).Google Scholar
21. Cannelli, G. and Verdini, L., Ric. Sci. 36, 98 (1966); G. Cannelli and L. Verdini, Ric. Sci. 36, 246 (1966).Google Scholar
22. Baker, C. C. and Birnbaum, H. K., Acta Metall. 21, 865 (1973).Google Scholar
23. Mattas, R. F. and Bimbaum, H. K., Acta Metall. 23, 973 (1975).Google Scholar
24. Chen, C. G. and Bimbaum, H. K., Phy. Stat. Sol. (A) 36, 687 (1976).Google Scholar
25. Schaumann, G., Völkl, J. and Alefeld, G., Phys. Rev. Lett. 21, 891 (1968).Google Scholar
26. Cantelli, R., Mazzolai, F. M. and Nuovo, M., Phys. Stat. Sol. 34, 597 (1969).Google Scholar
27. Magerl, A., Rush, J. J. and Rowe, J. M., Phys. Rev. B 33, 2093 (1986).Google Scholar
28. Cannelli, G. and Cantelli, R., Proc. of the 6th International Conference on Internal Friction and Ultrasonic Attenuation in Solids, ICIFUAS-6, Tokyo 1977, edited by Hasiguti, R. R. and Mikoshiba, N. (University of Tokyo Press), p.491, 1979.Google Scholar
29. Cannelli, G., Cantelli, R. and Koiwa, M., Phil. Mag. A 46,483 (1982).Google Scholar
30. Tanaka, S. and Koiwa, M., Scripta Metall. 15, 403 (1981).Google Scholar
31. Cannelli, G. and Cantelli, R., Cordero, F. and Trequattrini, F., J. Alloys Comp. 211/212, 80 (1994).Google Scholar
32. Black, J. L., in: Glassy Metals I, Springer Topics in Applied Physics, Vol.46 (Springer, Berlin, 1981); Amorphous Solids, ed. by W.A. Phillips, Springer Topics in Applied Physics (Springer, Berlin, 1981).Google Scholar
33. Black, J. L. and Fulde, P., Phys. Rev. Lett. 43, 453 (1979).Google Scholar
34. Cannelli, G., Cantelli, R. and Cordero, F., Z. Phys. Chem. Neue Folge 164, 943 (1989).Google Scholar
35. Huang, K. F., Granato, A. V. and Bimbaum, H. K., Phys. Rev. B 32, 2178 (1985).Google Scholar
36. Kramer, E. J. and Bauer, C. L., Phys. Rev. 163, 407 (1967). 134Google Scholar
37. Val, P. P. Pal, Natsik, V. D. and Val, L. N. Pal, Low Temp. Phys. 21, 505 (1995).Google Scholar
38. Drescher-Krasicka, E. and Granato, A. V., J. de Physique C 10–46, 73 (1985).Google Scholar
39. Cannelli, G., Cantelli, R. and Cordero, F., Phys. Rev. B 35, 7264 (1987).Google Scholar
40. Svare, I., Phys. Rev. B 40, 11585 (1989).Google Scholar
41. Anderson, I. S., Heidemann, A., Bonnet, J. E., Ross, D. K., Wilson, S. K. P., and McKergow, , J. Less-Common Met. 101, 405 (1984).Google Scholar
42. 1. Svare, Torgeson, D. R., and Borsa, F., Phys. Rev. B 43, 7448 (1991).Google Scholar
43. Leisure, R. G., Schwarz, R. B., Migliori, A., Torgeson, D. R., Svare, I., and Anderson, I. S., Phys. Rev. B 48, 887 (1993).Google Scholar
44. Cannelli, G., Cantelli, R., Cordero, F., Trequattrini, F., Anderson, I. S., Rush, J. J., Phys. Rev. Lett. 67, 2682 (1991); G. Cannelli, R. Cantelli, F. Cordero, F. Trequattrini, Phys. Rev. B 55, 17865 (1997).Google Scholar