Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-02T20:35:20.010Z Has data issue: false hasContentIssue false

Quantitative STEM and HRTEM Studies on Au Metallic Nano-Catalysts

Published online by Cambridge University Press:  01 February 2011

Long Li
Affiliation:
[email protected], University of Pittsburgh, Mechanical Engineering and Materials Science Department, 3700 O'Hara Street, 848 Benedum Hall, Pittsburgh, PA, 15261, United States, 412-6249753, 412-6248069
Laurent D. Menard
Affiliation:
[email protected], University of Illinois at Urbana-Champaign, Department of Chemistry, Urbana, IL, 61801, United States
Fengting Xu
Affiliation:
[email protected], University of Pittsburgh, Mechanical Engineering and Materials Science Department, Pittsburgh, PA, 15261, United States
Ralph G. Nuzzo
Affiliation:
[email protected], University of Illinois at Urbana-Champaign, Department of Chemistry, Urbana, IL, 61801, United States
Judith C. Yang
Affiliation:
[email protected], University of Pittsburgh, Mechanical Engineering and Materials Science Department, Pittsburgh, PA, 15261, United States
Get access

Abstract

Nano-catalysts, Au nano-particles on TiO2 (anatase), were studied by means of quantitative scanning transmission electron microcopy (Q-STEM) and high-resolution transmission electron microcopy (HRTEM). All the Au nano-catalysts were produced from an Au13 precursor, Au13[PPh3]4[S(CH2)11CH3]4, TiO2 supports, with three treatments: (1) thermal heating in the air at 400°C for 2 hours, (2) exposure to ozone (O3) at room temperature, and (3) exposure to atomic oxygen (AO, or O) with a AO dose of 7.3 ×1018 atom/cm2 at room temperature. Both reactive oxygen species O3 and AO produced significantly small sizes of Au particles as compared to those from the heating treatment in the air (2.7 ± 0.6 nm, 324 b 264 atoms). Ozone produced the smallest (1.2 ± 0.5 nm, 40 ± 49 atoms), whereas AO produced smaller (2.1 ± 0.7 nm, 72 ± 98 atoms), with a broad size distribution and a variety of shapes. HRTEM studies on the AO treated Au/TiO2 samples found that there could exist relationship between the particles size and their shapes which also affected by the interaction with TiO2 supports. The support effect of TiO2 to the shapes of Au particles was also studied.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Akita, T.; Tanaka, K.; Tsubota, S.; Haruta, M. J. Electron Microsc. 2000, 49, 657662.Google Scholar
2. Mallia, V.A.; Vemula, P.K.; John, G.; Kumar, A.; Ajayan, P.M. Angew. Chem. Int. Ed. 2007, 46, 32693274.10.1002/anie.200604218Google Scholar
3. Menard, L.D.; Gao, S.-P.; Xu, H.; Twesten, R.D.; Harper, A.S.; Song, Y.; Wang, G.; Douglas, A.D.; Yang, J.C.; Frenkel, A.I.; Nuzzo, R.G.; Murray, R.W. J. Phys. Chem. B 2006, 110, 1287412883.10.1021/jp060739gGoogle Scholar
4. Bamwenda, G.R.; Tsubota, S.; Nakamura, T.; Haruta, M. Catal. Lett. 1997, 44, 8387.10.1023/A:1018925008633Google Scholar
5. Bellon, P.; Manassero, M.; Sansoni, M. J. Chem. Soc., Dalton Trans. 1972, 14811487.Google Scholar
6. Schmid, G.; Pfeil, R.; Boese, R.; Bandermann, F.; Meyer, S.; Calis, G. H. M.; van der Velden, J. W. A. Chem. Ber. 1981, 114, 36343642.10.1002/cber.19811141116Google Scholar
7. Briant, C.E.; Hall, K.P.; Wheeler, A.C.; Mingos, D. M. P. J. Chem. Soc., Chem. Commun. 1984, 248250.10.1039/c39840000248Google Scholar
8. Shichibu, Y.; Negishi, Y.; Watanabe, T.; Chaki, N.K.; Kawaguchi, H.; Tsukuda, T. J. Phys. Chem. C 2007, 111, 78457847.10.1021/jp073101tGoogle Scholar
9. Menard, L.D.; Xu, H.; Gao, S.-P.; Twesten, R. D.; Harper, A.S.; Song, Y.; Wang, G.; Douglas, A.D.; Yang, J.C.; Frenkel, A.I.; Murray, R.W.; Nuzzo, R.G. J. Phys. Chem. B 2006, 110, 1456414573.Google Scholar
10. Menard, L.D.; Xu, F.; Nuzzo, R.G.; Yang, J.C. J. Catal. 2006, 243, 6473.10.1016/j.jcat.2006.07.006Google Scholar
11. Li, L.; Menard, Laurent D.; Xu, Fengting; Kang, Joo; Nuzzo, Ralph. G.; Yang, J.C. Microsc. Microanal. 2007, 13, 566567.Google Scholar
12. Smith, D.J.; Marks, L.D. Philos. Mag. A 1981, 44, 735740.Google Scholar
13. Singhal, A.; Yang, J.C.; Gibson, J.M. Ultramicroscopy 1997, 67, 191206.10.1016/S0304-3991(96)00094-0Google Scholar
14. Yang, J.C.; Bradley, S.; Gibson, J.M. Microsc. Microanal. 2000, 6, 353357.10.1017/S1431927602000600Google Scholar
15. Yang, J.C.; Bradley, S.; Gibson, J.M. Mater. Charact. 2003, 51, 101107.10.1016/j.matchar.2003.09.013Google Scholar
16. Caledonia, G.E.; Krech, R.H.; Green, B.D. AIAA J. 1987, 25, 5963.10.2514/3.9580Google Scholar
17. Li, L.; Yang, J.C.; Minton, T.K. J. Phys. Chem. C 2007, 111, 67636771.10.1021/jp0657843Google Scholar