Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-08T05:20:50.759Z Has data issue: false hasContentIssue false

Quantitative Measurement of Reduction of Boron Diffusion by Substitutional Carbon Incorporation

Published online by Cambridge University Press:  10 February 2011

M. S. Carroll
Affiliation:
Princeton University, Dept. of Electrical Engineering, Princeton, NJ 08544
L. D. Lanzerotti
Affiliation:
Princeton University, Dept. of Electrical Engineering, Princeton, NJ 08544
J. C. Sturm
Affiliation:
Princeton University, Dept. of Electrical Engineering, Princeton, NJ 08544
Get access

Abstract

Recently, the suppression of boron diffusion due to both thermal and transient enhanced diffusion (TED) has been demonstrated through the incorporation of 0.5% substitutional carbon in the base of Si/SiGe/Si heterojunction transistor's (HBT)[1,2]. Because the devices are sensitive to diffusion on a scale less than that we can detect with SIMS, in this paper combined process and device modeling (TMA TSUPREM4 and MEDICI) are used to relate observed electrical characteristics (collector saturation currents and Early voltages) of the HBT's to boron diffusion, with a sensitivity of 20-30Å. Boron diffusivity in the SiGeC base is ~8 times slower than that of the boron diffusivity in the SiGe base without implant damage (no TED). In the case of ion implant damage in an overlying layer to cause TED the excess interstitial concentration due to ion implant damage is reduced by approximately 99% through incorporation of 0.5% substitutional carbon in the HBT SiGe bases. This demonstrates that carbon incorporation acts as an effective sink for interstitials.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Lanzerotti, L. D., Sturm, J. C., Stach, E., Hull, R., Buyuklimanli, T., and Magee, C., IEDM Tech. Dig. 249 (1996)Google Scholar
[2] Lanzerotti, L. D., Sturm, J. C., Stach, E., Hull, R., Buyuklimanli, T., and Magee, C., APL, 70(23), 9 June 1997 Google Scholar
[3] Schuppen, A., Urben, U., Gruhle, A, Kibbel, H., Schumacher, H., and Konig, U., IEDM Tech. Dig. 743 (1995)Google Scholar
[4] Prinz, E. J., Garone, P. M., Schwartz, P. V., Xiao, X., and Sturm, J.C., IEEE Electron Device Letters, 12, 42 (1991)Google Scholar
[5] Stolk, P.A., Gossman, H. J., Eaglesham, D. J., Poate, J. M., Mat. Sci. & Eng. B36 (1996) 275281 Google Scholar
[6] Scholz, R., Gdsele, U., Huh, J. Y., Tan, T. Y., APL, 72 (2), 12 Jan 1998 Google Scholar
[7] Osten, H. J., Lippert, G., Gaworzewski, P., Sorge, R., APL 71 (11), 15 Sep 1997 Google Scholar
[8] Prinz, E. J., Sturm, J. C., Tech. Digest IEDM 853 (1991)Google Scholar
[9] Sturm, J. C., Schwartz, P. V., Prinz, E. J., Manoharan, H., J. Vac. Sci. Tech B 9 2011 (1991)Google Scholar
[10] Matutinovic-Krstelj, Z., Venkataraman, V., Prinz, E.J., Sturm, J.C., IEEE Transactions on Electron Devices, vol 43, No 3, March 1996.Google Scholar
[11] Fair, R. B., Impurity Doping Processes in Silicon, North Holland, 1981, edited by Wang, F. F. Y..Google Scholar
[12] Rückert, H., Heinemann, B., Röpke, W., Fischer, G., Lippert, G., Osten, H.J., Krups, R. P., Proceedings of the International Conference on Simulation of Semiconductor Precesses and Devices (Cambridge 1997)Google Scholar
[13] Kuo, P., Hoyt, J. L., Gibbons, Turner, Jacowitz, Kamins, APL, 62 (6), 8 Feb. 1993 Google Scholar