Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-28T08:48:50.018Z Has data issue: false hasContentIssue false

Quantitative Measurement of Dopant Concentration Profiling by Scanning Nonlinear Dielectric Microscopy

Published online by Cambridge University Press:  01 February 2011

Kenya Ishikawa
Affiliation:
[email protected], Tohoku University, Research Institute of Electrical Communication, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan, +81-22-217-5526, +81-22-217-5526
Koichiro Honda
Affiliation:
[email protected], Memory Device Laboratory Fujitsu Laboratories Ltd, 10-1 Morinosato-Wakamiya, Atsugi, 243-0197, Japan
Yasuo Cho
Affiliation:
[email protected], Tohoku University, Research Institute of Electrical Communication, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
Get access

Abstract

Using a scanning nonlinear dielectric microscopy (SNDM), we observed two standard Si samples with epitaxial staircase structures, which have known dopant density values calibrated by using secondary ion mass spectroscopy (SIMS). As the result, good quantitative correlation between dopant density values and SNDM signals was obtained without the phenomenon of contrast reversal effect, which is associated with conventional scanning capacitance microscopy (SCM) measurements. Thus, it is expected that SNDM will be an effective method for observing the quantitative measurement of two-dimensional dopant profiling on semiconductor devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Diebold, A. C., Kump, M. R., Kopanski, J. J., and Seiler, D. G., J. Vac. Sci. Technol. B 14, 196 (1996)Google Scholar
2. Kang, C.J., Kim, C.K., Lera, J.D., Kuk, Y., Mang, K.M., Lee, J.G., Suh, K.S. and Williams, C.C., Appl. Phys. Lett., 71, 1546 (1997)Google Scholar
3. Stephenson, R., Verhulst, A., Wolf, P. D., Caymax, M. and Vandervorst, W., Appl. Phys. Lett., 73, 2597 (1998)Google Scholar
4. Cho, Y., Kirihara, A., and Saeki, T., Rev. Sci. Instrum. 67, 2297 (1996)Google Scholar
5. Cho, Y., Kazuta, S., and Matsuura, K., Appl.Phys.Lett. 75, 2833 (1999)Google Scholar
6. Odagawa, H., Cho, Y., Funakubo, H and Nagashima, K., Jpn. J. Appl. Phys. 39, 3808 (2000)Google Scholar
7. Honda, K., Hashimoto, S. and Cho, Y., Appl. Phys. Lett. 86, 063515 (2005)Google Scholar
8. Honda, K., Hashimoto, S. and Cho, Y., Nanotechnology 17, S185 (2006)Google Scholar
9. Ishikawa, K., Honda, K. and Cho, Y., Nanotechnology 18, 084015 (2007)Google Scholar