Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-02T20:38:06.875Z Has data issue: false hasContentIssue false

A Purely Spectroscopic Technique for Determining Energy Band Offsets in Quantum Wells

Published online by Cambridge University Press:  26 February 2011

Emil S. Koteies*
Affiliation:
GTE Laboratories Inc., Waltham, MA 02254
Get access

Abstract

We have developed a novel experimental technique for accurately determining band offsets in semiconductor quantum wells (QW). It is based on the fact that the ground state heavy- hole (HH) band energy is more sensitive to the depth of the valence band well than the light-hole (LH) band energy. Further, it is well known that as a function of the well width, Lz, the energy difference between the LH and HH excitons in a lattice matched, unstrained QW system experiences a maximum. Calculations show that the position, and more importantly, the magnitude of this maximum is a sensitive function of the valence band offset, Qy, which determines the depth of the valence band well. By fitting experimentally measured LH-HH splittings as a function of Lz, an accurate determination of band offsets can be derived. We further reduce the experimental uncertainty by plotting LH-HH as a function of HH energy (which is a function of Lz ) rather than Lz itself, since then all of the relevant parameters can be precisely determined from absorption spectroscopy alone. Using this technique, we have derived the conduction band offsets for several material systems and, where a consensus has developed, have obtained values in good agreement with other determinations.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Tersoff, J. in Heterojunction Band Discontinuities, Physics and Applications, edited by Capasso, F. and Margaritondo, G. (Elsevier Science Publishers, Amsertdam, 1987) pp. 357.Google Scholar
2 Margaritondo, G. and Perfetti, P. in Heterojunction Band Discontinuities, Physics and Applications, edited by Capasso, F. and Margaritondo, G. (Elsevier Science Publishers, Amsertdam, 1987) pp. 59114.Google Scholar
3 Duggan, G. in Heterojunction Band Discontinuities, Physics and Applications, edited by Capasso, F. and Margaritondo, G. (Elsevier Science Publishers, Amsertdam, 1987) pp. 207262.Google Scholar
4 Wolford, D. J., Keuch, T. F., and Jaros, M. in Heterojunction Band Discontinuities, Physics and Applications, edited by Capasso, F. and Margaritondo, G. (Elsevier Science Publishers, Amsertdam, 1987) pp. 263282.Google Scholar
5 Laruelle, F. and Etienne, B., Solid State Commun, 65, 565 (1988);CrossRefGoogle Scholar
Koteies, Emil S., Owens, D. A., Bertolet, D. C., and Lau, Kei May, Phys. Rev, B38, 10139 (1988).CrossRefGoogle Scholar
6 Shum, k., Ho, P. P., Alfano, R. R., Welch, D. F., Wicks, G. W., and Eastman, L. F., Phys. Rev, B32, 3806 (1985);CrossRefGoogle Scholar
Ji, G., Reddy, U. K., Unlu, H., Henderson, T. S., and Morkoc, H., J. Vac. Sci. Technol, B5, 1346 (1987).CrossRefGoogle Scholar
7 Koteles, Emil S. and Elman, B., Nanostructures and Microstructure Correlation With Physical Properties of Semiconductors, edited by Craighead, H. G. and Gibson, J. M., (Proc. SPIE Vol. 1284, 1990), page 207.CrossRefGoogle Scholar
8 Bertolet, D. C., Hsu, Jung-Kuei, Lau, Kei May, Koteles, Emil S., and Owens, D. A., J. Appl. Phys, 64, 6562 (1988).CrossRefGoogle Scholar
9 Joyce, M. J., Johnson, M. J., Gal, M., and Usher, B. F., Phys. Rev. B38, 10978 (1988).CrossRefGoogle Scholar
10 Reithmaier, J. P., Höger, R., Riechert, H., Heberle, A., Abstreiter, G., and Weimann, G>, Appl. Phys. Lett, 56, 536 (1990) and Emil Koteles (unpublished data).CrossRef,+Appl.+Phys.+Lett,+56,+536+(1990)+and+Emil+Koteles+(unpublished+data).>Google Scholar
11 Koteies, Emil S., Owens, D. A., Bertolet, D. C., Hsu, Jung-Kuei, and Lau, Kei May, Surf. Sci, 228, 314 (1990).CrossRefGoogle Scholar
12 Koteies, Emil S. (unpublished).Google Scholar
13 Chin, R., Holonyak, N. Jr, Kirchoefer, S. W., Kolbas, R. M., and Rezek, E. A., Appl. Phys. Lett 34, 862 (1979);CrossRefGoogle Scholar
Brunemeier, P. E., Deppe, D. G., and Holonyak, N. Jr, Appl. Phys. Lett, 46, 755 (1985).CrossRefGoogle Scholar
14 Forest, S. R., Schmidt, P. H., Wilson, R. B., and Kaplan, M. L., Appl. Phys. Lett, 45, 1199 (1984).CrossRefGoogle Scholar
15 Haase, M. A., Pan, N., and Stillman, G. E., Appl. Phys. Lett, 54, 1457 (1989);CrossRefGoogle Scholar
Cavicchi, R. E., Lang, D. V., Gershoni, D., Sergent, A. M., Vandenberg, J. M., Chu, S. N.G., and Panish, M. B., Appl. Phys. Lett, 54, 739 (1989).CrossRefGoogle Scholar
16 Gershoni, D., Temkin, H., and Panish, M. B., Phys. Rev, B38, 7870 (1988).CrossRefGoogle Scholar
17 Tsang, W. T., Schubert, E. F., Chu, S. N. G., Tai, K. C., Sauer, R., Chiu, T. H., Cunningham, J. E., and Ditzenberger, J. A., Gallium Arsenide and Related Compounds, 1986, edited by Lindley, W. T., (Institute of Physics Conference Series Number 83, Bristol, 1987), page 93.Google Scholar