Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-11T17:37:13.584Z Has data issue: false hasContentIssue false

Pulsed Laser Melting: The Effect of Implanted Solutes on the Resolidification Velocity

Published online by Cambridge University Press:  22 February 2011

G. J. Galvin
Affiliation:
Department of Material Science, Cornell University, Ithaca, NY 14853;
J. W. Mayer
Affiliation:
Department of Material Science, Cornell University, Ithaca, NY 14853;
P. S. Peercy
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
Get access

Abstract

Transient electrical conductance has been used to measure the resolidification velocity in silicon containing implanted solutes. Nonequilibrium segregation of the solutes occurs during the rapid resolidification following pulsed laser melting. The velocity of the liquid-solid interface is observed to depend on the type and concentration of the solute. A 25% reduction in solidification velocity is observed for an implanted indium concentration of three atomic percent. Implanted oxygen is also shown to reduce the solidification velocity. The dependence of the velocity on solute concentration impacts a variety of segregation, trapping and supersaturated solution studies.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Poate, J. M. and Mayer, J. W., eds., Laser Annealing of Semiconductors (Academic Press, New York, 1982).Google Scholar
2.Narayan, J., Brown, W. L. and Lemons, R. A., eds., Laser-Solid Interactions and Transient Thermal Processing of Materials (North-Holland, New York, 1983).Google Scholar
3.Appleton, B. R. and Cellar, G. K., eds., Laser and Electron Beam Interactions with Solids (North-Holland, New York, 1982).Google Scholar
4.Campisano, S. U., Appl. Phys. A 30, 195 (1983).Google Scholar
5.White, C. W., Narayan, J. and Young, R. T. in: Laser-Solid Interactions and Laser Processing, Ferris, S. D., Leamy, H. J. and Poate, J. M., eds., (AIP, New York, 1979), p. 275.Google Scholar
6.Wood, R. F., Appl. Phys. Lett. 37, 302 (1980).Google Scholar
7.Narayan, J., J. Appl. Phys. 52, 1289 (1981).Google Scholar
8.Aziz, M. J., J. Appl. Phys. 53, 1158 (1982).Google Scholar
9.Gilmer, G. H. in Ref. 2, p. 249.Google Scholar
10.White, C. W., Zehner, D. M., Narayan, J., Holland, O. W., Appleton, B. R., and Wilson, S. R. in Ref. 2, p. 287.Google Scholar
11.Galvin, G. J., Thompson, M. O., Mayer, J. W., Hammond, R. B., Paulter, N., and Peercy, P. S., Phys. Rev. B 27, 1079 (1983).Google Scholar
12.Thompson, Michael O., Galvin, G. J., Mayer, J. W., Peercy, P. S. and Hammond, R. B., Appl. Phys. Lett. 42, 445 (1983).Google Scholar
13.Perepezko, J. H. and Boettinger, W. J. in: Alloy Phase Diagrams, Bennett, L. H., Massalski, T. B. and Giessen, B. C., eds., (North- Holland, New York, 1983), p. 223.Google Scholar
14.Aziz, M. J., Appl. Phys. Lett. 43, 552 (1983).Google Scholar