Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-27T03:12:02.123Z Has data issue: false hasContentIssue false

Prototyping of three-dimensional photonic crystal structures using electron-beam lithography

Published online by Cambridge University Press:  01 February 2011

G. Subramania
Affiliation:
Sandia National Laboratories, P.O Box 5800, Albuquerque, New Mexico 87185
J. M. Rivera
Affiliation:
Sandia National Laboratories, P.O Box 5800, Albuquerque, New Mexico 87185
Get access

Abstract

We demonstrate the fabrication of a three-dimensional woodpile photonic crystal in the near-infrared regime using a layer-by-layer approach involving electron-beam lithography and spin-on-glass planarization. Using this approach we have shown that we can make structures with lattice spacings as small as 550 nm with silicon as well as gold thus allowing for fabrication of photonic crystals with omnidirectional gap in the visible and near-IR. As a proof of concept we performed optical reflectivity and transmission measurements on a silicon structure which reveal peaks and valleys expected for a photonic band gap structure. The approach described here can be scaled down to smaller lattice constants (down to ∼400 nm) and can also be used with a variety of materials (dielectric and metallic) thus enabling rapid prototyping full three-dimensional photonic bandgap based photonic devices in the visible.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Yablanovitch, E., Phys. Rev. Lett. 58, 2059 (1987)Google Scholar
2. John, S. Phys. Rev. Lett. 58, 2486 (1987).Google Scholar
3. Lin, S.Y., Fleming, J.G., Hetherington, D.L., Smith, B.K., Biswas, R., Ho, K.M., Sigalas, M.M., Zubrzycki, W., Kurtz, S.R., and Bur, J., Nature( London) 394, 251 (1998)Google Scholar
4. Fleming, J.G. and Lin, S.Y., Opt. Lett., 24, 49 (1999).Google Scholar
5. Noda, S., Yamamoto, N., Kobayashi, H., Okano, M. and Tomoda, K., Appl. Phys. Lett. 75, 904 (1999);Google Scholar
Noda, S., Yamamoto, N., Imada, M., Kobayashi, H., Okano, M., J. Lightwave Technology, 17, 1949 (1999).Google Scholar
6. Vlasov, Y.A., Bo, X-Z., Strum, J.G., and Norris, D.J., Nature, 414, 289 (2001).Google Scholar
7. Campbell, M., Sharp, D.N., Harrison, M.T., Denning, R.G. and Tuberfeld, A.J., Nature(London) 404, 53 (2000);Google Scholar
Shoji, S., Kawata, S., Appl.Phys. Lett. 76, 2668 (2000);Google Scholar
Wang, X., Xu, J.F., Su, H.M., Zang, Z.H., Chen, Y.L., Wang, H.Z., Pang, Y.K. and Tam, W.Y., Appl. Phys. Lett. 82, 2212 (2003);Google Scholar
Fiegel, A., Veinger, M., Sfez, B., Arsh, A., Klebenov, M. and Lyubin, V., Appl. Phys. Lett. 83, 4480 (2003).Google Scholar
8. Schilling, J., Mueller, F., Matthias, S., Wehrspohn, R.B., Goesle, U., Busch, K., Appl. Phys. Lett. 78, 1180 (2001).Google Scholar
9. Kawashima, T., Sato, T., Ohtera, Y., and Kawakami, S., IEEE J. Quan. Elec. 38, 899(2002).Google Scholar
10. Kennedy, S.R., Brett, M.J., Toader, O., John, S., Nano Letters 2, 59 (2002).Google Scholar
11. Leung, W.Y., Kang, H., Constant, K., Cann, D., Biswas, R., Sigalas, M.M., Ho, K.M., J. Appl. Phys. 93, 5866 (2003).Google Scholar
12. Aoki, K., Miyezaki, H., Hireyama, H., Inoshita, K., Baba, T., Shinya, N., Aoyagi, Y., Appl. Phys. Lett. 81, 3122 (2002).Google Scholar
13. Koenderink, A.F., Johnson, P.M., Lopez, J.F.G., Vos, W.L., Competus Rendus de l'Academie des Sciences, 3, 67 (2002).Google Scholar
14. Ho, K.M., Chan, C.T., Soukoulis, C.M., Biswas, R. and Sigalas, M., Solid State Commmun. 89, 413 (1994).Google Scholar
15. Lin, S.Y. and Fleming, J.G., Lightwave, J. Technology, 17, 1944 (1999).Google Scholar
16. Qi, M., Lidorikis, E., Rakich, P.T., Johnson, S.G., Joannopoulos, J.D., Ippen, E.P. and H. Smith 429, 538 (2004).Google Scholar