Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-11T16:11:35.397Z Has data issue: false hasContentIssue false

Prospects of Laser Operation in Erbium Doped Silicon

Published online by Cambridge University Press:  10 February 2011

M. Q. Huda
Affiliation:
Dept. of EEE, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh Email: [email protected]
S. I. Ali
Affiliation:
Dept. of EEE, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh Email: [email protected]
Get access

Abstract

Prospects of laser operation in erbium doped silicon has been analyzed by a Shockley-Read-Hall (SRH) model. Erbium atoms have been considered to be introducing strong recombination centers in the silicon lattice. Electron-hole recombination at these sites were considered to be the source of erbium excitation. A two level system was considered for calculation of optical gain and the laser threshold. For a laser cavity of 300 μm with mirror reflectivities of 90%, and an optimistic absorption coefficient of 5 cm-1, a population inversion of 1.4×1018/cm3 was estimated as the threshold value. Achievement of the lasing condition was found feasible, but only for certain conditions of erbium activation. Effects of nonradiative deexcitation routes have been analyzed. On the assumption of 1019/cm3 of active erbium sites, linear increase of optical power in the laser cavity has been estimated for injected carrier densities above 1018/cm3.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ennen, H., Schneider, J., Pomrenke, G., and Axmann, A., Appl. Phys. Lett. 43, 943 (1983).Google Scholar
2. Zheng, B., J.Michel, Ren, F. Y. G., Kimerling, L. C., Jacobson, D. C., and Poate, J.M., Appl. Phys. Lett. 64, 2842 (1994).Google Scholar
3.G, Franzò, Priolo, F., Coffa, S., Polman, A., and Carnera, A., Appl. Phys. Lett. 64, 2235 (1994).Google Scholar
4. Polman, A., Custer, J. S., Snoeks, E., and Hoven, G. N. Vanden, Appl. Phys. Lett. 62, 507 (1993).Google Scholar
5. Michel, J., Benton, J. L., Ferrante, R. F., Jacobson, D. C., Eaglesham, D. J., Fitzerald, E. A., Xie, Y. H., Poate, J.M., and Kimerling, L. C., J. Appl. Phys. 70, 2678 (1991).Google Scholar
6. Thao, D. T. X., Ammerlaan, C. A. J., and Gregorkiewicz, T., J. Appl. Phys. 88, 1443 (2000).Google Scholar
7. Priolo, Francesco, Franzò, Giorgia, Coffa, Salvatore, Carnera, Alberto, Phys. Rev. B 57, 4443 (1998).Google Scholar
8. Huda, M. Q., Siddiqui, S. A., and Islam, M. S., Solid State Commun. 70, 235 (2001).Google Scholar
9. Xie, Y. H., Fitzerald, E. A., and Mii, Y. J., J. Appl. Phys. 70, 3223 (1991).Google Scholar
10. Kik, P. G.,deDood, M. J. A., Kikoin, K., Polman, A., Appl. Phys. Lett. 70, 1721 (1997).Google Scholar
11. Wilson, J., and Hawkes, J. F. B., Optoelectronics An Introduction, 2nd ed. Prentice-Hall, 1992.Google Scholar
12. Przybylinska, H., Jantsch, W., Suprun-Belevitch, Yu., Stepikhova, M., Palmetshofer, L., Hendorfer, G., Kozanecki, A., Wilson, R. J., and Sealy, B. J., Phys. Rev. B 54, 2532 (1996).Google Scholar
13. Vinh, N. Q., Przybylinska, H., Krasil'nik, Z. F., and Gregorkiewicz, T., Phys. Rev. Lett. 90, 066401 (2003).Google Scholar
14. Libertino, S., Coffa, S., and Priolo, F., J. Appl. Phys. 78, 3867 (1995).Google Scholar
15. Evans-Freeman, J. H., Kan, P. Y. Y., and Abdelgader, N., J. Appl. Phys. 92, 3755 (2002).Google Scholar