Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-28T04:07:03.132Z Has data issue: false hasContentIssue false

Properties of the magnetoresistive La0.8Sr0.2MnO3 film and integration with PbZr0.52 Ti0.48O3 ferroelectrics

Published online by Cambridge University Press:  10 February 2011

Fumiaki Mitsugi
Affiliation:
Department of the Electrical and Computer Engineering, Kumamoto University, Kurokami, Kumamoto 860-8555, Japan
Tomoaki Ikegami
Affiliation:
Department of the Electrical and Computer Engineering, Kumamoto University, Kurokami, Kumamoto 860-8555, Japan
Kenji Ebihara
Affiliation:
Department of the Electrical and Computer Engineering, Kumamoto University, Kurokami, Kumamoto 860-8555, Japan
J. Narayan
Affiliation:
Department of the Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695-7916, USA
A. M. Grishin
Affiliation:
Department of Condensed Matter Physics, Royal Institute of Technology, S- 10044 Stockholm, Sweden
Get access

Abstract

The colossal magnetoresistive La0.8Sr0.2MnO3 (LSMO) thin film was prepared on the MgO (100) single crystal substrate using KrF excimer pulsed laser deposition technique. The LSMO film deposited at the substrate temperature of 850 °C, oxygen pressure of 500 mTorr and laser energy density of 2 J/cm2(5 Hz) showed the resistivity peak temperature (Tp) of 330 K and the magnetoresi stance change of 15 %(H=0.7 T) at the room temperature. The large lattice mismatch with the substrate increased Tp and decreased the resistivity of the LSMO film.

The X-ray diffraction measurement for the PbZr0.52Ti0.48O3 (PZT) / LSMO heterostructures indicated both c-axis and in- plane orientation, with the good PZT surface morphology.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Anderson, P. W. and Hasagawa, H., Phys. Rev. 100, 675 (1955).Google Scholar
2 Goyal, A., Rajeswari, M., R.Shreekala, Lofland, S. E., Bhagat, S. M., Boettcher, T., Kwon, C., Ramesh, R. and Venkatesan, T., Appl. Phys. Lett., 71, 2535 (1997).Google Scholar
3 Urushibara, A., Morimoto, Y, Arima, T., Asamitsu, A., Kido, G and Tokura, Y., Phys. Rev. B 51, 14103 (1995).Google Scholar
4 Mitsugi, F., Ikegami, T., Ebihara, K., Narayan, J., Grishin, A. M., Transactions of the Materials Research Society of Japan (in print).Google Scholar
5 Kharstev, S. I., Johnsson, P. and Grishin, A. M., J. Appl. Phys. 87, 2394 (2000).Google Scholar
6 Choi, K. –K. and Yamazaki, Y., Jpn. J Appl. Phys. 38, 56 (1999).Google Scholar
7 Grishin, A. M., Khartsev, S. I. and Johnsson, P., Appl. Phys. Lett. 74, 1015 (1999).Google Scholar
8 Moshnyaga, V., Khoroshun, I., Sidorenko, A., Petrenko, P., Weidinger, A., Zeitler, M., Rauschenbach, B., Tidecks, R. and Samwer, K., Appl. Phys. Lett. 74, 2842 (1999).Google Scholar
9 Gommert, E., Cerva, H., Rucki, A., Helmolt, R. V., Wecker, J., Kuhrt, C. and Samwer, K., J. Appl. Phys. 81, 5496 (1997).Google Scholar
10 Hundley, M. F., Neumeier, J. J., Heffner, R. H., Jia, Q. X., Wu, X. D. and Thompson, J. D., J. Appl. Phys. 79, 4535 (1996).Google Scholar