Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-12-01T01:57:12.175Z Has data issue: false hasContentIssue false

The Properties of Silica and Hybrid Nanostructures

Published online by Cambridge University Press:  01 February 2011

Avi Shalav
Affiliation:
[email protected]@gmail.com, The Australian National University, Electronic Materials Engineering, The Research School of Physical Sciences and Engineering, Building 60; ANU Campus, Canberra, Australian Capital Territory, 2602, Australia
Robert Elliman
Affiliation:
[email protected], United States
Taehyun Kim
Affiliation:
[email protected], Australian National University, Electronic Materials Engineering, Canberra, Australian Capital Territory, Australia
Get access

Abstract

SiOx nanowires can be grown via the vapor-liquid-solid growth mechanism using SiO vapor produced during the active oxidation of a Si substrate. The as-grown SiOx nanowire have a range of useful physical properties but can also be used as large surface area substrates for the growth of secondary materials. In this study we report the use of optically active impurities to grow and dope secondary nanowire structures, and the use of simple coating methods to enhance and extend the functionality of these unique nanowire substrates.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Wagner, R. S. and Ellis, W. C. Applied Physics Letter Letters 4 (5), 8990 (1964).Google Scholar
2 Rao, C. N. R. Deepak, F. L. Gundiah, G. and Govindaraj, A. Progress in Solid State Chemistry 31 (1-2), 5147 (2003).Google Scholar
3 Ferlauto, A. S. Oliveira, S. Silva, E. E. Magalhaes, R. Magalhaes-Paniago, Ladeira, L. O. and Lacerda, R. G., Journal of Nan Nanoscience and Nanotechnology oscience 6 (3), 791795 (2006).Google Scholar
4 Bahloul-Hourlier, D. and Perrot, P. Journal of Phase Equilibria and Diffusion 28 (2), 150157 (2007).Google Scholar
5 Lander, J. J. and Morrison, J. Journal of Applied Physics 33 (6), 2089-& (1962).Google Scholar
6 Gelain, C. Cassuto, A. C and Legoff, P. Oxidation of Metals assuto 3 (2), 139-& (1971).Google Scholar
7 Smith, F. W. and Ghidini, G. J. Electrochem. Soc. 129 (6), 13001306 (1982).Google Scholar
8 Ishizaka, A. and Shiraki, Y. J. Electrochem. Soc. 133 (4), 666671 (1986).Google Scholar
9 Cros, A. Derrien, J. and Salvan, F. Surface Science 110 (2), 471490 (1981).Google Scholar
10 Dallaporta, H. Liehr, M. and Lewis, J. E. Physical Review B 41 (8), 50755083 (1990).Google Scholar
11 Elliman, R. G. Wilkinson, A. R. Kim, T. Sekhar, P. and Bhansali, S. Nucl. Instr. Meth. B 266 (8), 13621366 (2008).Google Scholar
12 Elliman, R. G. Wilkinson, A. R. Kim, T. H. Sekhar, P. K. and Bhansali, S. J. Appl. Phys. 103 (10), 5 (2008).Google Scholar
13 Shalav, A. Kim, T. H. and Elliman, R. G. Journal of Applied Physics 107 (4), 046101 (2010).Google Scholar
14 Sekhar, P. K. Ramgir, N. S. and Bhansali, S. The Journal of Physical Chemistry 112 (6), 17291734 (2008).Google Scholar
15 Kim, H. W. Shim, S. H. Kong, M. H. and Yang, H. H. Physica Status Solidi a-Applications and Materials Science 205 (8), 20022006 (2008).Google Scholar
16 Shalav, A. Venkatachalam, D. K. Reichardt, F. Fischer, F. F and Elliman, R. G. in ischer MRS Fall Meeting (Boston, 2009), pp. 1206–M1216Google Scholar