Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-24T15:49:55.580Z Has data issue: false hasContentIssue false

The Properties of Mfmos and MFOS Capacitors with High K Gate Oxides for one Transistor Memory Applications

Published online by Cambridge University Press:  21 March 2011

Tingkai Li
Affiliation:
Sharp Laboratories of America, Inc, 5700 NW Pacific Rim Blvd. Camas, WA 98607
Sheng Teng Hsu
Affiliation:
Sharp Laboratories of America, Inc, 5700 NW Pacific Rim Blvd. Camas, WA 98607
Hong Ying
Affiliation:
Sharp Laboratories of America, Inc, 5700 NW Pacific Rim Blvd. Camas, WA 98607
Bruce Ulrich
Affiliation:
Sharp Laboratories of America, Inc, 5700 NW Pacific Rim Blvd. Camas, WA 98607
Get access

Abstract

MFMOS and MFOS (M: Metal, F: Ferroelectrics, O: Oxide, S: Silicon) capacitors with high k gate oxides, such as ZrO2, HfO2 thin films, have been fabricated for one transistor memory applications. Experimental results showed that ZrO2 and HfO2 have no serious reaction or diffusion into silicon substrate. Due to their high dielectric constant, the operation voltages of MFMOS capacitors are reduced. The MFMOS capacitor exhibits 2V memory window. For lead germanium oxide (PGO) on ZrO2 and PGO on HfO2 MFOS memory cells the memory windows are 1.8 V and 1.6 V, respectively, which are large enough for one-transistor memory applications. The basic mechanism for one-transistor memory applications was also discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Looney, D.H., Semiconductive translating device, US Patent 2791758 (1957).Google Scholar
2. Brown, W.L., Semiconductive device, US Patent 2791759 (1957).Google Scholar
3. Ross, I.M., Semiconductive translating device, US Patent 2791760 (1957).Google Scholar
4. Morton, J.A., Electrical switching and storage, US Patent 2791761 (1957).Google Scholar
5. Kijima, T., and Matsunaga, H. Jpn. J. Appl. Phys. 38, 2281 (1999).10.1143/JJAP.38.2281Google Scholar
6. Imada, S., Shouriki, S., Tokumitsu, E., and Ishiwara, H. Jpn. J. Appl. Phys. 37, 6497 (1998).10.1143/JJAP.37.6497Google Scholar
7. FuJimori, Y., Izumi, N., Nakamura, T., and Kamisawa, A., Jpn. J. Appl. Phys. 38, 2285 (1999).10.1143/JJAP.38.2285Google Scholar
8. Li, Tingkai, Zhang, Fengyan and Hsu, Sheng Teng, Appl. Phys. Lett. 74 (2) 296 (1999).10.1063/1.123955Google Scholar
9. Li, Tingkai, Hsu, Sheng Teng, Lee, J. J., Gao, Yufei and Engelhard, Mark, Mat. Res. Soc. Symp. Proc. Vol. 596, 443 (2000).10.1557/PROC-596-443Google Scholar
10. Li, Tingkai, Zhang, Fengyan, Ono, Yoshi and Hsu, Sheng Teng, Integrated Ferroelectrics, 26, 1-4, 777 (1999).10.1080/10584589908215612Google Scholar
11. Li, Tingkai, Zhang, Fengyan and Hsu, Sheng Teng, Mat. Res. Soc. Symp. Proc. Vol. 541, 579 (1999).10.1557/PROC-541-579Google Scholar
12. Kang, Laegu, Lee, Byoung-Hun, Qi, Wen-Jie, Jeon, Yong-Joo, Nieh, Renee, Gopalan, Sundar, Onishi, Katsunori and Lee, Jack C., Mat. Res. Soc. Symp. Proc. Vol. 592, 81(2000).10.1557/PROC-592-81Google Scholar