Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T09:32:19.843Z Has data issue: false hasContentIssue false

Production and Characterization of Deposited Mono-Sized Clusters

Published online by Cambridge University Press:  28 February 2011

Donald M. Cox
Affiliation:
Corporate Research Laboratories, Exxon Research and Engineering Company, Rt 22 East, Annandale, NJ 08801
Barbara Kessler
Affiliation:
Corporate Research Laboratories, Exxon Research and Engineering Company, Rt 22 East, Annandale, NJ 08801
Pierre Fayet
Affiliation:
Universite de Lausanne, Lausanne, Switzerland
Wolfgang Eberhardt
Affiliation:
Kernforschungsanlage, Julich, Germany.
Rex D. Sherwood
Affiliation:
Corporate Research Laboratories, Exxon Research and Engineering Company, Rt 22 East, Annandale, NJ 08801
Andrew Kaldor
Affiliation:
Corporate Research Laboratories, Exxon Research and Engineering Company, Rt 22 East, Annandale, NJ 08801
Get access

Abstract

Using high energy rare gas ion sputtering of metal targets, we are able to produce nanoamps of mass selected transition metal clusters. Mono-sized cluster ions are deposited at low kinetic energy upon substrates, e.g. silica or carbon, and are then characterized using UV and x-ray photoemission. In this paper we will discuss photoemission measurements of the 4f7/2 core level energies of Au (1–5,7 atom samples) clusters deposited on silica. From such studies we are beginning to understand how electronic structure, cluster stability and mobility depend on (deposited) cluster size, surface coverage, and substrate temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kaldor, A., Cox, D. M., and Zakin, M. R., in Advances in Chemical Physics. Vol 70 edited by Prigogine, I. and Rice, S. A., (Wiley, New York, 1988) pg 211 and references therein.Google Scholar
2. (a) Masson, A., Bellamy, B., Romdhane, Y. H., Che, M., Roulet, H., and Dufour, G., Surf. Sci. 173, 479 (1986).Google Scholar
(b) Mason, M. G., Phys. Rev. B27, 748 (1983).CrossRefGoogle Scholar
(c) DiCenzo, S. B. and Werthiem, G. K., Comments Solid State Phys. 11 203 (1985), and references therein.Google Scholar
(d) Cheung, T. P., Surf. Sci. 127 L129 (1983); 140, 151 (1984).Google Scholar
(e) Wertheim, G. K. and DiCenzo, S. B., Phys. Rev. B37 844 (1988).Google Scholar
3. For example see, (a) Sinfeld, J. H., Catal. Rev. 3, 175 (1969);Google Scholar
Sinfeld, J. H., Annu. Rev. Mater. Sci. 2 641 (1972).Google Scholar
4. Assumes a structureless packing model of spherical clusters. Similar numbers result from crystalline structures, e.g. see Gates, B. C., Kratzer, J. R. and Schuit, C. A., Chemistry of Catalytic Processes. McGraw Hill, New York (1979).Google Scholar
5. Cox, D. M., Fayet, P., Brickman, R. O., Hahn, M. Y. and Kaldor, A., Catal. Lett. 4, 271 (1990).Google Scholar
6. Fayet, P. and Woeste, L., Spectrosc. Int. J. 3, 91 (1984);Google Scholar
Surf.Sci. 156, 134 (1984);Google Scholar
Z. Physik, D3, 177 (1986).Google Scholar
7. DiCenzo, S. B., Berry, S. D. and Hartford, E. H. Jr., Phys. Rev. B38, 8465 (1988).Google Scholar
8. Eberhardt, W., Fayet, P., Cox, D. M., Fu, Z., Kaldor, A., Sherwood, R. and Sondericher, D., Phys. Rev. Lett. 64 780 (1990).Google Scholar