Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-24T17:38:08.888Z Has data issue: false hasContentIssue false

Production and biofunctionalization of elongated semiconducting nanocrystals for ex-vivo applications

Published online by Cambridge University Press:  27 January 2014

Tobias Jochum
Affiliation:
Center for Applied Nanotechnology (CAN) GmbH, Grindelallee 117, 20146 Hamburg, Germany
Daniel Ness
Affiliation:
Center for Applied Nanotechnology (CAN) GmbH, Grindelallee 117, 20146 Hamburg, Germany
Marieke Dieckmann
Affiliation:
Center for Applied Nanotechnology (CAN) GmbH, Grindelallee 117, 20146 Hamburg, Germany
Katja Werner
Affiliation:
Center for Applied Nanotechnology (CAN) GmbH, Grindelallee 117, 20146 Hamburg, Germany
Jan Niehaus
Affiliation:
Center for Applied Nanotechnology (CAN) GmbH, Grindelallee 117, 20146 Hamburg, Germany
Horst Weller
Affiliation:
Center for Applied Nanotechnology (CAN) GmbH, Grindelallee 117, 20146 Hamburg, Germany Institute of Physical Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
Get access

Abstract

Hereby, we present a synthetic route for the production of wurtzite (WZ) CdSe nanocrystals (NCs), which are essential for further shell growing reaction (e.g. CdSe/CdS dot-in-rod (DRs) nanoheterostructures). Our continuous flow reactor set-up consists of a separate nucleation chamber and growth oven. Both components can be heated up to temperatures above 350 °C to guarantee WZ crystal structure.

Furthermore, we introduce DRs as the next powerful tool concerning biological imaging and assay detection. Using DRs in cell imaging results in an increased sensitivity due to the higher brightness compared to spherical core/shell/shell (CSS) nanocrystals.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Steckel, J. S., Snee, P., Coe-Sullivan, S., Zimmer, J. P., Halpert, J. E., Anikeeva, P., Kim, L., Bulovic, V. and Bawendi, M. G., Angew. Chem. Int. Ed 45, 57965799 (2006).CrossRefGoogle Scholar
Chan, Y., Caruge, J., Snee, P.T. and Bawendi, M. G., Appl. Phys. Lett 85, 24602662 (2004).CrossRefGoogle Scholar
McDonald, S. A., Konstantatos, G., Zhang, S., Cyr, P. W., Klem, E. J. D., Levina, L., and Sargent, E. H., Nature materials 4, 138142 (2005).CrossRefGoogle Scholar
Kim, S., Lim, Y. T., Soltesz, E. G., de Grand, A. M., Lee, J., Nakayama, A., Parker, J. A., Mihaljevic, T., Laurence, R. G., Dor, D. M., Cohn, L. H., Bawendi, M. G. and Frangioni, J. V., Nature Biotechnology 22, 9397 (2004).CrossRefGoogle Scholar
Medintz, I. L., Uyeda, H. T., Goldman, E. R. and Mattoussi, H., Nature materials 4, 435446 (2005).CrossRefGoogle Scholar
Resch-Genger, U., Grabolle, M., Cavaliere-Jaricot, S., Nitschke, R., and Nann, T., Nature methods 5, 9, 763775 (2008).CrossRefGoogle Scholar
Talapin, D. V., Koeppe, R., Götzinger, S., Kornowski, A., Lupton, J. M., Rogach, A. L., Benson, O., Feldmann, J., Weller, H., Nano Lett. 3, 12, 16771681 (2003).CrossRefGoogle Scholar
Carbone, L., Nobile, C., De Giogi, M., Della Sala, F., Morello, G., Pompa, P., Hytch, M., Snoeck, E., Fiore, A., Franchine, I. R., Nadasan, M., Silvestre, A. F., Chiodo, L., Kudera, S., Cingolani, R., Krahne, R., and Manna, L., Nano Lett. 7, 10, 29422950 (2007).CrossRefGoogle Scholar
Xing, G., Chakrabortty, S., Chou, K. L., Mishra, N., Huan, C. H. A., Chan, Y. and Sum, T. C., Applied Physics Letters 97, 061112 (2010).CrossRefGoogle Scholar
Pöselt, E., Schmidtke, C., Fischer, S., Peldschus, K., Salamon, J., Kloust, H., Tran, H., Pietsch, A., Heine, M., Adam, G., Schumacher, U., Wagener, C., Förster, S., and Weller, H., ACS Nano 6, 4, 33463355 (2012).CrossRefGoogle Scholar
Talapin, D. V., Nelson, J. H., Shevchenko, E. V., Aloni, S., Sadtler, B., and Alivisatos, A. P., Nano Lett. 7, 29512959 (2007).CrossRefGoogle Scholar
Marre, S. and Jensen, K. F., Chem. Soc. Rev. 39, 11831202 (2010).CrossRefGoogle Scholar
Ness, D., Niehaus, J., Trans, H. and Weller, H., MRS Proceedings 1386 (2012).CrossRefGoogle Scholar
Niehaus, J., Becker, S., Schmidtke, C., Ness, D., Werner, K., and Weller, H., Nanotech Conference & Expo Proceedings 1, 413416 (2012).Google Scholar
Nag, A., Hazarika, A., Shanavas, K. V., Sharma, S. M., Dasgupta, I., Sarma, D. D., J. Phys. Chem. Lett. 2, 7, 706712 (2011).CrossRefGoogle Scholar
Huang, J., Kovalenko, M. V. and Talapin, D.V., J. Am. Chem. Soc. 132, 1586615868 (2010).CrossRefGoogle Scholar
Baker, D. R. and Kamat, P. V., Langmuir 26, 13, 1127211276 (2010).CrossRefGoogle Scholar