Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-12T04:20:04.498Z Has data issue: false hasContentIssue false

Processing Path and The Evolution of Crystallinity in Rapidly Solidified Glassy Alloys

Published online by Cambridge University Press:  15 February 2011

M. A. Otooni*
Affiliation:
US Army Armament Research, Development and Engineering Center, Picatinny Arsenal, NJ, 07806-5000.
Get access

Abstract

Atomic transport properties in rapidly solidified glassy alloys are not fully understood in spite of much experimental data on the subject. Nevertheless, a thorough understanding of these properties is of fundamental importance when studying the practical limits of the application of rapidly solidified glassy alloys.

Several attempts are made in this paper to explain our experimental results on the mechanical flow properties near the transition temperature, Tr. These results are interpreted in the context of possible operating mechanisms such as diffusion and/or relaxation processes. Some inferences have been made on the nature of viscosity and its fluctuation near the transition temperature. The linear temperature dependence of the viscosity near the transition temperature is explained by invoking the free-volume concept for the viscosity of the glassy alloys.

These results are used to provide appropriate data for the selection of feasible processing paths which will produce alloys with advanced thermomechanical properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Levi, C. C., et al, J. Mater. Res. 3 (5), pp. 969983, (1988).Google Scholar
2. Roettinger, W. J., et al, Proc. TSM-AIME, North East Regional Meeting of Met. Soc. of AIME, pp. 21–58, (1985).Google Scholar
3. Anderson, T. E., et al, Proc. TSM-AIME, North East Regional Meeting of Met. Soc. of AIME, pp. 219–223, (1985).Google Scholar
4. Spaepen, P., et al, Amorphous Metallic Alloys, Butterworth Publishing, pp. 231–2340 (1983).Google Scholar
5. Tsao, S. S. et al, Acta Met., Vol.33, pp. 881884, (1985).Google Scholar
6. Egami, T., et al, Mat. Res. Sym. Proc (Phase Transition in Condensed Systems), pp. 199–209, (1987).Google Scholar
7. Egami, T. and Ichikawa, T., Mater. Sci. Eng. vol.52, p. 293 (1978).Google Scholar
8. Egami, T., Jour. Mater. Sci. Vol.13, p. 2587 (1978).Google Scholar
9. Chen, H.S., J. Appl. Phys. Vol.49, p. 4595 (1978).Google Scholar
10. Chen, Y. N. and Egami, T., J. Appl. Phys., Vol.50, p.7615 (1979).Google Scholar
11. Kursumovic, N. and Scott, M. Appl. Phys. Letters, Vol.28, p. 1781, (1980).Google Scholar
12. Taub, A.I and Spaepen, F., Acta-Metal., Vol.28, p. 657, (1981).Google Scholar
13. Patterson, J. P and Jones, D. R. H., Acta- Metal., Vol.28, p. 675, (1980).Google Scholar
14. Anderson, P. M. and Lord, A. E. Jr., Mater. Sci. Eng., Vol.44, p., 279, (1980).Google Scholar
15. Taub, A.I. and Spaepen, F., Scr. Metal., vol.13, p-195 (1979).Google Scholar
16. Battezzati, L. and Greer, A. L., Acta Metal., Vol.37, pp. 17911802 (1989).Google Scholar
17. Cohen, M. H. and Turnbull, D., J. Chem., Vol.39, (1959).Google Scholar
18. Turnbull, D. and Cohen, M. H., J. Chem. Phys. Vol.34, p. 120 (1961).Google Scholar
19. Turnbull, D. and Cohen, M. H., J. Chem. Phys. Vol.52, p. 3038, (1970).Google Scholar
20. Chen, H.S. and Turnbull, D., J. Chem. Phys. Vol.48, p. 2560 (1968).Google Scholar
21. Polk, D. E. and Turnbull, D., Acta Metal, Vol.20, p. 4931 (1972).Google Scholar
22. Willson, J. S. A. Poole, D., Mat. Res. Bul. Vol.25, pp. 113118r (1990).Google Scholar
23. Beukel, A. D. and Sietsinal, J., Acta. Metal. Mater., Vol.38, No. 3, pp. 383389, (1990).Google Scholar
24. Bhatti, A. R and Cantor, B., Mat. Sci. and Eng. Vol.97, pp. 479482, (1988).Google Scholar
25. Zheng, , Fu-Qian, , Mater. Sci. and Eng. Vol.97, pp. 487491, (1988).Google Scholar
26. Libera, R. M., et al, J. Mater Res. 3 (3), pp. 441452, (1988).Google Scholar
27. Kelton, F. K., Mat. Res. Symp. Proc., (Phase Transformation in Condensed Systems), pp. 256–268, (1987).Google Scholar
28. Otooni, M.A., Jour. Non-Cryst. Solids, Vol. 65, pp. 389401, (1984).Google Scholar
29. Anchev., V., Proc. of XI Int. Cong. on Electron Microscopy, pp. 15531554, Kyoto, Japan, (1986).Google Scholar
30. Smith, J. D., Phil. Mag. B., Vol.43, pp. 907909, (1981).Google Scholar
31. Hirotsu, Y., Jap. Jour. Appl. Phys. Vol 23, pp. 478484, (1984).Google Scholar
32. Heirich, B., Proc. Rapidly Quenched Metals, Elsevier Science Publishers, B. V. pp. 231–234, (1985).Google Scholar
33. Nishi, Y., Proc. Rapidly Quenched Metals, Elsevier Science Publisher, B. pp. 231–234, (1985).Google Scholar
34. Davies, H. Proc. Rapidly Quenched Metals, RQ 3, Vol 1, pp. 19, (1978).Google Scholar
35. Ramachandrarau, P. Proc. Rapidly Quenched Metals, pp. 192–396, (1980).Google Scholar