Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-28T07:01:14.586Z Has data issue: false hasContentIssue false

Probing of Ag-based Resistive Switching on the Nanoscale

Published online by Cambridge University Press:  12 October 2011

A. Geresdi
Affiliation:
Department of Physics, Budapest University of Technology and Economics and Condensed Matter Research Group of the Hungarian Academy of Sciences, 1111 Budapest, Budafoki út 8., Hungary
A. Halbritter
Affiliation:
Department of Physics, Budapest University of Technology and Economics and Condensed Matter Research Group of the Hungarian Academy of Sciences, 1111 Budapest, Budafoki út 8., Hungary
E. Szilágyi
Affiliation:
KFKI Research Institute for Particle and Nuclear Physics, P.O. Box 49, H-1525 Budapest, Hungary
G. Mihály
Affiliation:
Department of Physics, Budapest University of Technology and Economics and Condensed Matter Research Group of the Hungarian Academy of Sciences, 1111 Budapest, Budafoki út 8., Hungary
Get access

Abstract

We study the switching characteristics of nanoscale junctions between a metallic tip and a silver film covered by a thin Ag2S ionic conductor layer. Resistive switching phenomena are studied on samples of various Ag2S layer thicknesses. Metallic and semiconductor behavior are distinguished by current-voltage characteristics measured at room temperature and at 4.2 K.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Terabe, K., Hasegawa, T., Nakayama, T. and Aono, M., Nature 433, 47 (2005).Google Scholar
2. Waser, R. and Aono, M., Nat. Mater. 6, 833 (2006).Google Scholar
3. Dong, Y., Yu, G., McAlpine, M. C., Lu, W. and Lieber, C. M., Nano Lett. 8, 386 (2008).Google Scholar
4. Kaeriyama, S., Sakamoto, T., Sunamura, H., Mizuno, M., Kawaura, H., Hasegawa, T., Terabe, K., Nakayama, T. and Aono, M., IEEE J. Solid-State Circuits 40, 168 (2005).Google Scholar
5. Dietrich, S., Angerbauer, M., Ivanov, M., Gogl, D., Hoenigschmid, H., Kund, M., Liaw, C., Markert, M., Symanczyk, R., Altimime, L., Bournat, S. and Mueller, G., IEEE J. Solid-State Circuits 42, 839 (2007).Google Scholar
6. Terabe, K., Nakayama, T., Hasegawa, T. and Aono, M., Appl. Phys. Lett. 80, 4009. (2002).Google Scholar
7. Morales-Masis, M., van der Molen, S. J., Fu, W. T., Hesselberth, M. B. and van Ruitenbeek, J. M., Nanotechnology 20, 095710 (2009).Google Scholar
8. Nayak, A., Tamura, T., Tsuruoka, T., Terabe, K., Hosaka, S., Hasegawa, T. and Aono, M., J. Phys. Chem. Lett. 1, 604. (2010).Google Scholar
9. Chua, L., Circuit Theory, IEEE Transactions on 18, 507 (1971).Google Scholar
10. Pászti, F., Manuaba, A., Hajdu, C., Melo, A.A., and da Silva, M.F., Nucl. Instr. and Methods B 47, 187. (1990).Google Scholar
11. Kótai, Nucl, E.. Instr. and Methods B 85 588 (1994).Google Scholar
12. Morales-Masis, M., Wiemhofer, H.-D. and van Ruitenbeek, J. M., Nanoscale 2, 2275 (2010)Google Scholar
13. Wexler, G., Proceedings of the Physical Society 89, 927 (1966)Google Scholar
14. Geresdi, A., Halbritter, A., Gyenis, A., Makk, P. and Mihály, G., Nanoscale 3, 1504 (2011)Google Scholar
15. Wang, Z., Gu, T., Tada, T., Watanabe, S., Applied Physics Letters 93, 152106 (2008)Google Scholar