Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T05:35:49.113Z Has data issue: false hasContentIssue false

Pressure-Induced Phase Transformations in Li-based Complex Hydrides

Published online by Cambridge University Press:  26 February 2011

Raja Chellappa
Affiliation:
[email protected], University of Nevada, Reno, Chemical & Metallurgical Engineering, 1664 N. Virginia Street (MS 388), Reno, NV, 89557, United States, 7757841446, 7753275059
Dhanesh Chandra
Affiliation:
[email protected], University of Nevada, Reno, Chemical & Metallurgical Engineering, 1664 N. Virginia Street (MS 388), Reno, NV, 89557, United States
Stephen Gramsch
Affiliation:
[email protected], Carnegie Institution of Washington, Geophysical Laboratory, 5251 Broad Branch, NW, Washington, DC, 20015, United States
Maddury Somayazulu
Affiliation:
[email protected], Carnegie Institution of Washington, Geophysical Laboratory, 5251 Broad Branch, NW, Washington, DC, 20015, United States
Russell Hemley
Affiliation:
[email protected], Carnegie Institution of Washington, Geophysical Laboratory, 5251 Broad Branch, NW, Washington, DC, 20015, United States
Get access

Abstract

An overview of the pressure-induced transformations and order-disorder phenomena in LiAlH4 (up to 7 GPa) and LiNH2 (up to 25 GPa) are presented. The analysis of pressure-induced changes in Raman spectra suggest a phase transition at ∼3 GPa for LiAlH4 and ∼14 GPa for LiNH2. New results on the metastable recovery of the high pressure β-LiAlH4 phase are also presented. An examination of the lattice translational and librational modes reveals that the high pressure β-LiAlH4 phase is disordered while there is evidence of orientational ordering in the high pressure beta-LiNH2 phase.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Chandra, D., Reilly, J. J., Chellappa, R., J. Metals, 58, 26 (2006).Google Scholar
2. Maurice, D. R. and Courtney, T. H., Metall. Trans. A 21, 289 (1990).Google Scholar
3. Balema, V. P., Pecharsky, V. K., and Dennis, K. W., J. Alloys Comp. 313, 69 (2000); V. P. Balema, L. Balema, Phys. Chem. Chem. Phys. 7, 1310 (2005).Google Scholar
4. Suryanarayana, C., Prog. Mater. Scci. 46, 1 (2001).Google Scholar
5. Chellappa, R. S., Chandra, D., Gramsch, S. A., Hemley, R. J., Lin, J-F., Song, Y., J. Phys. Chem. B 110, 11088 (2006).Google Scholar
6. Chellappa, R. S., Chandra, D., Somayazulu, M., Gramsch, S. A., Hemley, R. J., J. Phys. Chem. B. (2006) To be submitted.Google Scholar
7. Pitt, M. P., Blanchard, D., Hauback, B. C., Fjellvåg, H., Marshall, W. G., Phys. Rev. B 72, 214113 (2005).Google Scholar
8. Chen, P., Ziong, Z., Luo, J., Lin, J. and Tan, K. L., Nature, 420, 302 (2002); T. Ichikawa, N. Hanada, S. Isobe, H. Y. Leng and H. Fujii, J. Alloys Compd., 404–406, 435 (2005).Google Scholar
9. Chen, Y., Wu, C-Z., Wang, P., and Cheng, H-M., Int. J. Hyd. Energy, 31, 1236 (2006); J. Lu and Z. Z. Fang, J. Phys. Chem. B 109, 20830 (2005).Google Scholar
10. Müller, M., Senker, J., Asmussen, B., Press, W., Jacobs, H., Kockelmann, W., Mayer, H. M., and Ibberson, R. M., J. Chem. Phys., 107, 2363 (1997); J. Chem. Phys., 109, 3559 (1998).Google Scholar
11. Araújo, C. M., Ahuja, R., Talyzin, A. V., and Sundqvist, B., Phys. Rev. B 72, 054125 (2005); B. Sundqvist and O. Andersson, Phys. Rev. B 73, 092102 (2006).Google Scholar