Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T02:32:17.483Z Has data issue: false hasContentIssue false

Preparation Of Metal Nitrides Via Laser Induced Photolytic Decomposition Of Metal-Amides

Published online by Cambridge University Press:  10 February 2011

Chaitanya K. Narula
Affiliation:
Department of Chemistry, Ford Motor Company, P.O. Box 2053, MD 3083, Dearborn, MI 48121
M. Matti Maricq
Affiliation:
Department of Chemistry, Ford Motor Company, P.O. Box 2053, MD 3083, Dearborn, MI 48121
Get access

Abstract

Irradiation of {[(CH3)3Si]2N}3Y, Zr[N(C2H5)2]4, and Nb[N(C2H5)2]4 by the 1.064 μm line of a pulsed Nd:YAG laser results in the decomposition of Zr[N(C2H5)2]4 and Nb[N(C2H5)2]4 while {[(CH3)3Si]2N}3Y remains unaffected. The decomposition is photolytic and is accompanied by a visible emission tracing the path of the incident beam. The decomposition products form corresponding carbide/nitrides on pyrolysis in vacuum and nitrides on pyrolysis in an ammonia atmosphere. The spectroscopic investigation of the visible emission, and the pyrolysis of the decomposition products to metal nitrides is described.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Herman, I.P., Chem. Rev., 89, 1323 (1989).Google Scholar
2. Haggerty, J.S., Cannon, W.R. in Laser-Induced Chemical Processes, edited by Steinfeld, J.I., (Plenum Press, New York, 1981) pp. 165241.Google Scholar
3. Cannon, W.R., Danforth, S.C., Flint, J.H., Haggerty, J.S. and Marra, R.A., J. Am. Ceram. Soc., 65 [7] 324–30 (1982).Google Scholar
4. Cannon, W.R., Danforth, S.C., Haggerty, J.S. and Marra, R.A., J. Am. Ceram. Soc., 65 [7] 330–35 (1982).Google Scholar
5. Flint, H., Haggerty, J.S., Proc. Soc. Photo-Opt. Instrum. Eng., 458, 108–13 (1984).Google Scholar
6. Suyama, Y., Marra, R.A., Haggerty, J.S., Bowen, H.K., Am. Ceram. Soc. Bull., 64 [10] 1356–59 (1985).Google Scholar
7. Rice, G.W., J. Am. Ceram. Soc., 69[8] C183 (1986).Google Scholar
8. Gupta, A., West, G.A., Donlan, J.P. in Laser Assisted Deposition, Etching, and Doping, SPIE 459, 94102 (1984).Google Scholar
9. Knudsen, A.K. in Conference on Ceramic Powder Science and Technology, Boston, MA, (1986).Google Scholar
10. Casey, J.D., Haggerty, J.S., J. Mater. Sci., 22[2] 737–44 (1987).Google Scholar
11. Maricq, M.M and Narula, C.K., Chem. Phys. Lett., 187 220226 (1991).Google Scholar
12. Narula, C.K., Maricq, M.M., Salmeen, I.T., Demczyk, B.G. and Weber, W.H., J. Am. Ceram. Soc., 76 2727 (1993).Google Scholar
13. Shriver, D.F., The Manipulation of Air-Sensitive Compounds, McGraw-Hill, New York, 1967.Google Scholar
14. Bradley, D.C., Thomas, I.M., J. Chem. Soc., 3857 (1960).Google Scholar
15. Meggers, W. F., Corliss, C. H., and Scribner, B. F., Tables of Spectral Line Intensities, NBS Monograph 145 part 1, (1975).Google Scholar