Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-12T09:42:16.726Z Has data issue: false hasContentIssue false

Preparation of Diamond-Like Carbon by Pulsed Laser Deposition

Published online by Cambridge University Press:  10 February 2011

T. Matsui
Affiliation:
Yoshimura Pi-Electron Materials Project, ERATO, JRDC, c/o Matsushita Research Institute Tokyo, Inc., 3-10-1 Higashimita, Tama-ku, Kawasaki 214, Japan
M. Yudasaka
Affiliation:
Yoshimura Pi-Electron Materials Project, ERATO, JRDC, c/o Matsushita Research Institute Tokyo, Inc., 3-10-1 Higashimita, Tama-ku, Kawasaki 214, Japan
K. Imai
Affiliation:
Yoshimura Pi-Electron Materials Project, ERATO, JRDC, c/o Matsushita Research Institute Tokyo, Inc., 3-10-1 Higashimita, Tama-ku, Kawasaki 214, Japan
Y. Ohki
Affiliation:
Yoshimura Pi-Electron Materials Project, ERATO, JRDC, c/o Matsushita Research Institute Tokyo, Inc., 3-10-1 Higashimita, Tama-ku, Kawasaki 214, Japan
S. Yoshimura
Affiliation:
Yoshimura Pi-Electron Materials Project, ERATO, JRDC, c/o Matsushita Research Institute Tokyo, Inc., 3-10-1 Higashimita, Tama-ku, Kawasaki 214, Japan
Get access

Abstract

Diamond-like carbon (DLC) films have been prepared by pulsed laser deposition using graphite and cured phenol resin as targets. By comparison with previous reports, it is found that the lower power density (fluence) of irradiated pulsed laser can form DLC. In case of cured phenol resin used as a target, DLC was formed at almost the same wavelength and fluence region as that with graphite.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Marquardt, C. L., Williams, R. T. and Nagel, D. J., Mater.Res.Soc.Symp.Proc. 38, p.325(1985).Google Scholar
2. Sato, T., Furuno, S., Iguchi, S. and Hanabusa, M., Appl.Phys.A 45, p.355(1988)Google Scholar
3. Krishnaswamy, J., Rengan, A., Narayan, J., Vedam, K. and McHargue, C. J., Appl.Phys. Lett. 54, p.2,455(1989)Google Scholar
4. Cuomo, J. J., Pappas, D. L., Bruley, J., Doyle, J. P. and Saenger, K. L., J.Appl.Phys. 70, p.1,706 (1991)Google Scholar
5. Pappas, D. L., Saenger, K. L., Bruley, J., Krakow, W., Cuomo, J. J., Gu, T. and Collins, R.W., J.Appl.Phys. 71, p.5,675(1992)Google Scholar
6. Martin-Cago, J. A., Vazquez, L., Bernard, P., Ferrer, S. and Comin, F., Mater.Sci. Eng.B 11, p. 337(1992)Google Scholar
7. Diaz, J., Martin-Gago, J. A., Ferrer, S. and Comin, F., Diamond Relat.Mater. 1, p.824(1992)Google Scholar
8. Capano, M. A., Qian, F., Singh, R. K. and McDevit, N. T., Mater. Res. Soc. Symp.Proc. 285, p.569(1993)Google Scholar
9. Leppvuori, S., Levoska, J., Vaara, J. and Kusmartseva, O., Mater.Res.Soc.Symp. Proc. 285, p.557(1993)Google Scholar
10. Müller, F. and Mann, K., Diamond Relat.Mater. 2, p.233(1993)Google Scholar
11. Xiong, F., Wang, Y. Y., Leppert, V. and Chang, R. P. H., J.Mater.Res. 8, p. 2,265 (1993)Google Scholar
12. Voevodin, A. A., Laube, S. J. P., Walck, S. D., Solomon, J. S., Donley, M. S. and Zabinski, J. S., J.Appl.Phys. 78(6), p.4,123(1995)Google Scholar
13. Hanabusa, M. and Tsujihara, K., J.Appl.Phys. 78, p. 4,267 ( 1995)Google Scholar
14. Cooper, C. V., Beetz, C. P. Jr., Buchholtz, B. W., Wilbur, P. J. and Wei, R., Diamond Relat.Mater. 3, p.534(1994)Google Scholar
15. Wagner, J., Ramsteiner, M., Wild, Ch. and Koidl, P., Phys.Rev.B 40, p.1,817(1989)Google Scholar
16. Knight, D. and White, W., J.Mater.Res., 4, p.385(1989)Google Scholar
17. Rengan, A., narayan, J., Jahnke, C., Bedge, S., Park, J. L. and Ming, Li, Mater.Sci. Eng.B 15, p.15(1992)Google Scholar