Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-28T10:37:35.765Z Has data issue: false hasContentIssue false

Preparation and Characterization of Electrospun Poly(ethylene oxide) (PEO) Nanofibers-reinforced Epoxy Matrix Composites

Published online by Cambridge University Press:  01 February 2011

Jae-Rock Lee
Affiliation:
Advanced Materials Division, Korea Research Institute of Chemical Technology, Yusong, Daejeon 305–600, KOREA
Soo-Jin Park
Affiliation:
Advanced Materials Division, Korea Research Institute of Chemical Technology, Yusong, Daejeon 305–600, KOREA
Min-Kang Seo
Affiliation:
Advanced Materials Division, Korea Research Institute of Chemical Technology, Yusong, Daejeon 305–600, KOREA
Joung-Man Park
Affiliation:
Department of Polymer Science and Engineering, Engineering Research Institute, Gyeongsang National University, Chinju, 660–701, KOREA
Get access

Abstract

In this work, electrospinning was carried out using 12 wt.% poly(ethylene oxide) (PEO) solution under fixed tip-to-collect distance (10 cm) and voltage (15 kV) in order to fabricate nanofibers-reinforced composites. The content of PEO nanofibers was varied from 0 to 10 wt.% in the epoxy (EP) matrix resins. And the PEO powders-impregnated composites were also prepared to compare with physicochemecal properties of nanofibers-reinforced composites. Thermal and mechanical interfacial properties of EP/PEO nanocomposites were characterized by thermogravimetric analysis (TGA) and fracture toughness test, respectively. As a result, the PEO-based nanofibers-reinforced composites showed an improvement of thermal stability parameters (initial decomposed temperature (IDT) and integral procedural decomposition temperature (IPDT)) and fracture toughness factors (KIC and GIC), compared to the composites impregnated with PEO powders. And the thermal and mechanical interfacial properties of the composites were increased with increasing the PEO content, which could be probably attributed to the higher specific surface area and larger aspect ratio of PEO nanofibers, resulting in improving the demand performance of the nanocomposites.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. -Formhals, A., US Patent #1, 975, 504, 1934.Google Scholar
2. Doshi, J. and Reneker, D. H.. J. Electrost. 35, 151 (1995).Google Scholar
3. Gibson, P. W., Schreuder-Gibson, H. L., and Riven, D., AIChE J. 45, 190 (1999).Google Scholar
4. Ko, F. K., Laurencin, C. T., Borden, M. D., and Reneker, D. H., The dynamics of cell-fiber architecture interaction. In: Proceedings, Annual Meeting, Biomaterials Research Society, San Diego, 1998.Google Scholar
5. Reneker, D. H. and Chun, I.. Nanotechnology 7, 216 (1996).Google Scholar
6. May, C. A., In Epoxy Resins: Chemistry and Technology, 2nd Ed., Marcel Dekker, New York, 1988.Google Scholar
7. Reich, R., Solid State Technology, Sept. 1978, p 82.Google Scholar
8. Melliar-Smith, C. M., Matsuoka, S., and Hubbauer, P., Plastic and Rubber: Materials and Applications, 1980, p 49.Google Scholar
9. Park, S. J., Seo, M. K., and Lee, J. R., Polym. Int. 53, 1617 (2004).Google Scholar
10. Norris, I. D., Shaker, M. M., Ko, F. K., and MacDiarmid, A. G., Synthetic Metals 114, 109 (2000).Google Scholar
11. Seo, M. K. and Park, S. J., Macromol. Mater. Eng. 289, 368 (2004).Google Scholar
12. Fong, H., Chun, I., and Reneker, D.H., Polymer 40, 4585 (1999).Google Scholar
13. Theron, S. A., Zussman, E., and Yarin, A. L., Polymer 45, 2017 (2004).Google Scholar
14. Ohtsuka, K., Hasegawa, K., Fukuda, K., and Uede, K., J. Appl. Polym. Sci. 44, 1743 (1992).Google Scholar
15. Gao, J. G., Li, Y. F., Zhag, M., and Liu, G. D., J. Appl. Polym. Sci. 78, 797 (2000).Google Scholar
16. Sui, G., Zhang, Z. G., Liang, Z. Y., and Chen, C. Q., Mater. Sci. Eng. A 342, 31 (2003).Google Scholar
17. Rao, V. L., Rao, M. R., J. Appl. Polym. Sci. 69, 749 (1998).Google Scholar
18. Park, S. J., Kim, M. H., Lee, J. R., Choi, S., J. Colloid Interface Sci. 228, 287 (2000).Google Scholar
19. Kvam, K., Biomaterials 13, 101 (1992).Google Scholar
Griffith, A. A., Phil. Trans. R. Soc. 221, 163 (1921).Google Scholar
21. Zhang, T., Litt, M. H., and Rogers, C. E., J. Polym. Sci. Part B Polym. Phys. 32, 1671 (1994).Google Scholar
22. Seo, M. K. and Park, S. J., Chem. Phys. Lett. 395, 44 (2004).Google Scholar