Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-12T08:00:26.524Z Has data issue: false hasContentIssue false

Prediction of First Phase Formation at Au-METAL Interfaces Using the Effective Heat of Formation Model

Published online by Cambridge University Press:  25 February 2011

R. Pretorius
Affiliation:
Van de Graaff Group, National Accelerator Centre, FAURE, 7131, South Africa.
T. K. Marais
Affiliation:
Van de Graaff Group, National Accelerator Centre, FAURE, 7131, South Africa.
A. E. Muller
Affiliation:
Physics Dept., University of the Western Cape, BELLVILLE, 7530, South Africa.
D. Knoesen
Affiliation:
Physics Dept., University of the Western Cape, BELLVILLE, 7530, South Africa.
Get access

Abstract

The effective heat of formation model enables heats of formation to be calculated as a function of concentration. By choosing the effective concentration at the growth interface to be that of the liquidus minimum, the model correctly predicL. first phase formation for 14 binary systems for which experimental data was found, except for the Au-Cu system which does not have a well-defined minimum on the liquidus curve.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Walser, R.M. and Bene, R.W., Appl. Phys. Lett. 28, 624 (1976).Google Scholar
2. Bene, R.W., Appl. Phys. Lett. 41, 529 (1982).Google Scholar
3. Rónay, M., Appl. Phys. Lett. 42, 577 (1983).CrossRefGoogle Scholar
4. Pretorius, R., Mat. Res. Soc. Proc. 25, 15 (1984).Google Scholar
5. Pretorius, R., Vacuum 41, 1038 (1990).Google Scholar
6. Pretorius, R., de Reus, R., Vredenberg, A.M. and Saris, F.W., Materials Letters 9, 494 (1990).Google Scholar
7. Pretorius, R., de Reus, R., Vredenberg, A.M. and Saris, F.W., J. Appl. Phys. (in press).Google Scholar
8. Kubaschewski, O. and Alcock, C.B., Metallurgical Thermochemistry, Fifth Edition (Pergamon Press, Oxford, 1979), p. 268.Google Scholar
9. Massalski, T.B., Binary Alloy Phase Diagrams (American Society for Metals, Metal Park, OH, 1986).Google Scholar
10. Niessen, A.K., DeBoer, F.R., de Châtel, P.F., Mathens, W.C.M., and Miedema, A.R., CALPHAD 1, 51 (1983).Google Scholar
11. Miedema, A.R., deChâtel, P.F. and De Boer, F.R., Physica 100B, 1 (1980).Google Scholar
12. Brown, A.M. and Ashby, M.F., Acta Metallurgica 24, 1088 (1980).Google Scholar
13. Marinković, Ž. and Simić, V., J. Less.-Common Met. 115. 225 (1986).CrossRefGoogle Scholar
14. Finstad, T.G., Andreassen, T. and Olsen, T., Thin Solid Films 29, 145 (1975).Google Scholar
15. Campisano, S.U., Foti, G., Rimini, E., Lau, S.S. and Mayer, J.W., Phil. Mag. 31, 903 (1975).Google Scholar
16. Majni, G., Nobili, C., Ottaviani, G., Costato, M. and Galli, E., J. Appl. Phys. 52, 4047 (1981).Google Scholar
17. Majni, G., Ottaviani, G. and Galli, E., J. Crystal Growth 47, 583 (1979).Google Scholar
18. Mayer, J.W. and Li, J., (private communications).Google Scholar
19. Colgan, E.G. and Mayer, J.W., J. Mater. Res. 2, 28 (1987).Google Scholar
20. Weaver, C. and Brown, L.C., Philos. Mag. 8, 1379 (1963).Google Scholar
21. Tu, K.N. and Rosenberg, R., Jap. J. Phys. Suppl. 2, 633 (1974).Google Scholar
22. Buene, L., Falkenberg-Arell, H., and Tafto, J., Thin Solid Films 65, 247 (1980).Google Scholar
23. Tisone, T.C. and Lau, S.S., J. Appl. Phys. 45, 1667 (1974).CrossRefGoogle Scholar
24. Christou, C.A. and Day, H., J. Appl. Phys. 44, 3386 (1973).Google Scholar
25. Tisone, T.C. and Drobek, J., J. Vac. Sci. Technol. 9, 271 (1972).Google Scholar
26. Villars, P. and Calvert, L.D., Pearson's Handbook of Crystallographic Data for Intermetallic Phases (American Society for Metals, Metal Park, OH, 1985).Google Scholar