Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-03T08:11:05.658Z Has data issue: false hasContentIssue false

Praseodymium Dioxide Doping of In1−xGaxAsyP1−y Epilayer Grown with Liquid Phase Epitaxy

Published online by Cambridge University Press:  21 February 2011

Kari T. Hjelt
Affiliation:
Optoelectronics Laboratory, Helsinki University of Technology, SF-02150 Espoo, Finland
Markku A. Sopanen
Affiliation:
Optoelectronics Laboratory, Helsinki University of Technology, SF-02150 Espoo, Finland
Harri K. Lipsanen
Affiliation:
Optoelectronics Laboratory, Helsinki University of Technology, SF-02150 Espoo, Finland
Turkka O. Tuomi
Affiliation:
Optoelectronics Laboratory, Helsinki University of Technology, SF-02150 Espoo, Finland
Stanislav HasenÖhrl
Affiliation:
Institute of Electrical Engineering, Slovak Academy of Sciences, Dúbravskà Cesta 9, 842 39 Bratislava, Slovakia
Get access

Abstract

Praseodymium dioxide (PrO2) -doped In0.69Ga0.31As0.67P0.33 layers are grown on semiinsulating In P substrates with liquid-phase epitaxy. The PrO2 doping of the growth solution varies from 0 to 0.32 wt %. The quaternary In0.69Ga0.31As0.67P0.33 layer composition determined with two-crystal X-ray diffraction and photoreflectance is found to be independent of the PrO2 concentration in the melt. The photoluminescence spectra measured at 12 K show both exciton and donor-acceptor peaks, the magnitudes of which depend on the PrO2 doping. The carrier concentration of the n-type quaternary layer decreases and the mobility increases with increasing PrO2 concentration and reaches the values of 8.3.1015 cm−3 and 7300 cm2/Vs, respectively, at about 0.1 wt% at 77 K. The experiments show that PrO2 has an impurity gettering effect in the growth process.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Novák, J., Hasenöhrl, S., Kuliffayová, M. and Oswald, J., J. Crystal Growth 110, 862866 (1991).Google Scholar
2. Bagraev, N. T., Vlasenko, L. S., Gatsoev, K. A., Gorelenko, A.T., Kamanin, A. V., Mamutin, V. V., Pushnyi, B. V., Tibilov, V. K., Tolparov, Yu. P., and Shubin, A. E., Sov. Phys. Semicond. 18 (1), 4950 (1984).Google Scholar
3. Zakharenkov, L. F., Masterov, V. F., and Khokhryakova, O. D., Sov. Phys. Semicond. 21 (2), 211212 (1987).Google Scholar
4. Wu, M. and Chiu, C., J. Appl. Phys. 73 (1), 468470 (1993).Google Scholar
5. Lai, M. Z., Chang, L. B., J. Appl. Phys. 72 (4), 13121315 (1992).Google Scholar
6. Wu, M., Chen, E., Chin, T. and Tu, Y., J. Appl. Phys. 71 (1), 456461 (1992).Google Scholar
7. Kuphal, E., J. Crystal Growth 67, 441457 (1984).Google Scholar