Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-12-01T03:01:26.339Z Has data issue: false hasContentIssue false

Positive Temperature Coefficient of Resistance in MOCVD (Ba0.75Sr0.25)Ti1+yO3+z Films

Published online by Cambridge University Press:  11 February 2011

S. Saha
Affiliation:
Materials Science Division and Argonne National Laboratory, Argonne, IL-60439, USA
D. Y. Kaufman
Affiliation:
Energy Technology Division, Argonne National Laboratory, Argonne, IL-60439, USA
S. K. Streiffer
Affiliation:
Materials Science Division and Argonne National Laboratory, Argonne, IL-60439, USA
R. A. Erck
Affiliation:
Energy Technology Division, Argonne National Laboratory, Argonne, IL-60439, USA
O. Auciello
Affiliation:
Materials Science Division and Argonne National Laboratory, Argonne, IL-60439, USA
Get access

Abstract

The leakage and dielectric properties of a thickness series (90–480 nm) of {100} fiber-textured MOCVD (Ba0.75Sr0.25)Ti1+yO3+z (BST) thin films on Pt/SiO2/Si were investigated. The temperature and voltage dependence of the permittivity were consistent with previous observations, where thinner films demonstrated a suppressed temperature and electric field response that transitioned to a more bulk-like response with increasing film thickness. The current-voltage characteristics showed two distinct regimes. At low fields the current displayed weak field dependence and a monotonic increase with increasing temperature. In contrast, positive temperature coefficient of resistance (PTCR) was observed in the high-field leakage current behavior. The PTCR behavior was more pronounced for thicker BST films. Factors contributing to the observed PTCR effect are outlined and contrasted with the description for bulk BaTiO3 ceramics.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Streiffer, S.K., Basceri, C., Parker, C.B., Lash, S.E., and Kingon, A.I., J. Appl. Phys. 86, 4565 (1999).Google Scholar
2. Dietz, G.W., Schumacher, M., Waser, R., Streiffer, S.K., Basceri, C., and Kingon, A.I., J. Appl. Phys. 82, 2359 (1997).Google Scholar
3. Zafar, S., Jones, R. E., Jiang, B., White, B., Kaushik, V., and Gillespie, S., Appl. Phys. Lett. 73, 3533 (1998).Google Scholar
4. Im, J., Auciello, O., Baumann, P.K., Streiffer, S.K., Kaufman, D.Y., and Krauss, A.R., Appl. Phys. Lett. 76, 625 (2000).Google Scholar
5. Scott, J. F., Integr. Ferrolectr. 20, 15 (1998)Google Scholar
6. Tash, A.F. and Parker, LH., IEEE Circ. Dev. Mag. 6, 17 (1990)Google Scholar
7. York, R., Nagra, A., Periaswamy, P., Auciello, O., Streiffer, S.K., and Im, J., Integrated Ferroelectrics 34, 177 (2001).Google Scholar
8. Baniecki, J.D., Laibowitz, R.B., Shaw, T.M., Parks, C., Lian, J., Xu, H., and Ma, Q.Y., J. Appl. Phys. 89, 2873 (2001).Google Scholar
9. Copel, M., Duncombe, P.R., Neumayer, D.A., and Shaw, T.M., Tromp, R.M., Appl. Phys. Lett. 70, 3227 (1997).Google Scholar
10. Baumann, P.K., Kaufman, D.Y., Im, J., Auciello, O., Streiffer, S.K., Erck, R.A., and Giumarra, J., Integrated Ferroelectrics 34, 255 (2001).Google Scholar
11. Basceri, C., Streiffer, S.K., Kingon, A.I., and Waser, R., J. Appl. Phys. 82, 2497 (1997).Google Scholar
12. Parker, C.B., Maria, J.-P., and Kingon, A.I., Appl. Phys. Lett. 81, 340 (2002).Google Scholar
13. Hwang, C.S., Lee, B.T., Kang, C.S., Kim, J.W., Lee, K.H., Cho, H-J., Horii, H., Kim, W.D., Lee, S.I., Roh, Y. B. and Lee, M.Y., J. Appl. Phys. 83, 3703 (1998).Google Scholar
14. Kulwicki, B.M., in Advances in Ceramics, Vol. 1 Grainboundary Phenomena in Electronic Ceramics, edited by. Levinson, L.M. and Hill, D.C. (Am. Ceram. Soc. Columbus, OH, 1981), pp. 138153.Google Scholar
15. Heywang, W., Solid-State Electron. 3, 51 (1961).Google Scholar
16. Sze, S. M., Physics of Semiconductor Devices (Wiley, New York, 1981).Google Scholar
17. Robertson, J. and Chen, C.W., Appl. Phys. Lett. 74, 1168 (1999).Google Scholar