Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T02:48:05.955Z Has data issue: false hasContentIssue false

Porous Organosilicates for On-Chip Dielectric Applications

Published online by Cambridge University Press:  10 February 2011

R. D. Miller
Affiliation:
IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120–6099
R. Beyers
Affiliation:
IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120–6099
K. R. Carter
Affiliation:
IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120–6099
R. F. Cook
Affiliation:
IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120–6099
M. Harbison
Affiliation:
IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120–6099
C. J. Hawker
Affiliation:
IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120–6099
J. L. Hedrick
Affiliation:
IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120–6099
V. Lee
Affiliation:
IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120–6099
E. Liniger
Affiliation:
IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120–6099
C. Nguyen
Affiliation:
IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120–6099
J. Remenar
Affiliation:
IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120–6099
M. Sherwood
Affiliation:
IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120–6099
M. Trollsås
Affiliation:
IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120–6099
W. Volksen
Affiliation:
IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120–6099
D. Y. Yoon
Affiliation:
IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120–6099
Get access

Abstract

Porous organosilicates useful for on-chip insulator applications can be prepared by templating the vitrification of low molecular weight silsesquioxanes (SSQs) using highly branched, thermally labile macromolecules which are subsequently removed in a thermal process to generate porosity. The process involves spin coating a mixture of the matrix material and the porogen (pore generator) followed by thermal curing to initiate vitrification and decomposition of the porogen. The morphology is fixed during the formation of the nanoscopic inorganicorganic hybrid and is maintained during foaming. This process generates controllable and stable morphologies where the void volume is determined by the porogen loading level. The porous materials are thermally robust and intrinsically hydrophobic without subsequent chemical treatment. Dielectric constants of < 2.2 are easily achieved for pore volumes of only 20%, and this porosity appears to be predominately closed cell in nature. These materials display a number of thermal mechanical and electric properties consistent with the requirements for on-chip insulator applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. “The National Technology Roadmap for Semiconductors” 1997 Edition (Semiconductor Industry Association, San Jose, CA, 1997).Google Scholar
2. Tummala, R. R.; Keyes, R. W.; Grobman, W. D.; Kapur, S. in Microelectronics Packaging Handbook; Tummala, R. R., Rymaszewski, E. J., Eds.; Van Nostrand Reinhold: New York, 1989; Chapter 9, p. 673 if.10.1007/978-1-4613-1069-3_9Google Scholar
3. Edelstein, D.; Heidenreich, J.; Goldblatt, R.; Cote, W.; Uzoh, C.; Lustig, N.; Ropar, R.; McDevitt, T.; Motsiff, W.; Simon, A.; Dukovic, J.; Wachnik, R.; Rathore, H.; Schulz, R.; Wu, L.; Luce, S.; Slattery, J. Tech. Digest IEEE International Electron Devices Mtg. 1997, 376.Google Scholar
4. Singer, P. Semiconductor International 1998 (June), p. 90.Google Scholar
5. Peters, L. Semiconductor International 1998 (September), 21(10), p. 64 and references cited therein.Google Scholar
6. Hedrick, J. L.; Carter, K. R.; Labadie, J. W.; Miller, R. D.; Volksen, W.; Hawker, C. J.; Yoon, D. Y.; Russell, T. P.; McGrath, J. E.; Briber, R. M. Adv. Polym. Sci. 1999, 141, 1.10.1007/3-540-49814-1_1Google Scholar
7. Hedrick, J. L.; Miller, R. D.; Hawker, C. J.; Carter, K. R.; Volksen, W.; Yoon, D. Y.; Trollsås, M. Adv. Mater. 1998, 10(13), 1049.10.1002/(SICI)1521-4095(199809)10:13<1049::AID-ADMA1049>3.0.CO;2-F3.0.CO;2-F>Google Scholar
8. Remenar, J. F.; Hawker, C. J.; Hedrick, J. L.; Kim, S.-M.; Miller, R. D.; Nguyen, C.; Trollsås, M.; Yoon, D. Y. Mat. Res. Soc. Symp. Proc. 1998, 511, 69.10.1557/PROC-511-69Google Scholar
9. (a) Hedrick, J. L.; Srinivasan, S.; Cha, H.-J.; Yoon, D.; Flores, V.; Harbison, M.; DiPietro, R.; Hinsberg, W.; Deline, V.; Brown, H. R.; Sherwood, M.; Paulson, E.; Miller, R. D.; Cook, R.; Liniger, E.; Simonyi, E.; Klaus, D.; Sohen, S.; Hummel, J. Mat. Res. Soc. Symp. Proc. 1997, 443, 47.10.1557/PROC-443-47Google Scholar
(b) Hedrick, J. L.; Cha, H.-J.; Miller, R. D.; Yoon, D. Y.; Brown, H. R.; DiPietro, R. D.; Cook, R. F.; Hullel, J. P.; Klaus, D. P.; Liniger, E. G.; Simonyi, E. Macromolecules 1997, 30, 8512.10.1021/ma970135yGoogle Scholar
(c) Hedrick, J. L.; Hawker, C. J.; Miller, R. D.; Twieg, R.; Srinivasan, S.; Trollsås, M. Macromolecules 1997, 30, 7607.10.1021/ma970797nGoogle Scholar
10. (a) Lu, Y.; Ganguli, R.; Drewien, C. A.; Anderson, M. T.; Brinker, C. J.; Gong, W.; Guo, Y.; Soyez, H.; Dunn, B.; Huang, M. H.; Zink, J. I. Nature 1997, 389, 364.10.1038/38699Google Scholar
(b) Bruinsma, P. J.; Hess, N. J.; Bontha, J. R.; Liu, J.; Baskaran, S. Mater. Res. Soc. Symp. Proc. 1997, 443, 105.10.1557/PROC-443-105Google Scholar
(c) Ogawa, M. A. J Chem. Soc. Chem. Commun. 1996, 1149.10.1039/CC9960001149Google Scholar
11. (a) Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D. Science 1998, 279, 548.10.1126/science.279.5350.548Google Scholar
(b) Zhao, D.; Yang, P.; Melosh, N.; Feng, J.; Chmelka, B. F.; Stucky, G. D. Adv. Mater. 1998, 10(16), 1380.10.1002/(SICI)1521-4095(199811)10:16<1380::AID-ADMA1380>3.0.CO;2-83.0.CO;2-8>Google Scholar
(c) Zhao, D.; Huo, Q.; Feng, J.; Chmelka, B. F.; Stucky, G. D. J. Am. Chem. Soc. 1998, 120, 6024.10.1021/ja974025iGoogle Scholar
12. (a) Hrubesh, L. W.; Keene, L. E.; Latorre, V. R. J. Mater. Res. 1993, 8(7), 1736.10.1557/JMR.1993.1736Google Scholar
(b) Husing, N.; Schubert, U. Angew. Chem. Int. Ed 1998, 37 22.10.1002/(SICI)1521-3773(19980202)37:1/2<22::AID-ANIE22>3.0.CO;2-I3.0.CO;2-I>Google Scholar
13. (a) Smith, D. M.; Anderson, J.; Cho, C. C.; Johnston, G. P.; Jeng, S. P. Mater. Res. Soc. Symp. Proc. 1995, 381, 261.10.1557/PROC-381-261Google Scholar
(b) Zielinski, E. M.; Russell, W. W.; List, R. S.; Wilson, A. M.; Jin, C.; Newton, K. J.; Lu, J, P.; Hurl, T.; Hsu, W. Y.; Cordasco, V.; Gopikanth, M.; Korthuis, V.; Lee, W.; Cerny, G.; Russell, N. M. Proc. IDE”97 1997, 936.Google Scholar
14. Barney, R. H.; Itoh, M.; Sakakibara, A.; Suzuki, T. Chem. Rev. 1995, 95, 1409.Google Scholar
15. (a) Trollsås, M.; Hedrick, J. L.; Mecerreyes, D.; Dubois, Ph.; Jérôme, R.; Ihre, H.; Hult, A. Macromolecules 1997, 30, 8508.10.1021/ma970798fGoogle Scholar
(b) Trollsås, M.; Hedrick, J. L.; Mecerreyes, D.; Dubois, Ph.; Jérôme, R.; Ihre, H.; Hult, A. Macromolecules 1998, 30, 2758.Google Scholar
(c) Trollsås, M.; Hedrick, J. L. J. Am. Chem. Soc. 1998, 120, 4644.10.1021/ja973678wGoogle Scholar
(d) Trollsås, M.; Claesson, H.; Althoff, B.; Hedrick, J. L. Angew. Chem. Int. Ed 1998, 37, 3132.10.1002/(SICI)1521-3773(19981204)37:22<3132::AID-ANIE3132>3.0.CO;2-B3.0.CO;2-B>Google Scholar
16. Nguyen, C. V.; Carter, K. R.; Hawker, C. J.; Hedrick, J. L.; Jaffe, R. L.; Miller, R. D. Remenar, J. F.; Rhees, H.-W., Rice, P. M.; Toney, M. F.; Trollsås, M.; Yoon, D. Y. Chem. Mater. 1999 (in press).Google Scholar
17. Sanchez, M. I.; Hedrick, J. L.; Russell, T. P. J. Polym. Sci.: Part B: Polym. Phys. 1995, 33, 253.10.1002/polb.1995.090330210Google Scholar
18. Findersen, E.; Feidenhans'l, R.; Vigild, M. E.; Clausen, K. N., Hansen, J. B.; Bentzen, M. D.; Goff, J. P. J Appl. Phys. 1994, 76, 4636.10.1063/1.357300Google Scholar
19. (a) Moylan, C. R.; Best, M. E.; Ree, M. J. Polym. Sci.: Part B: Polym. Phys. 1991, 29, 87.10.1002/polb.1991.090290111Google Scholar
(b) Yang, D. K.; Koros, W. J.; Hopfenberg, H. B.; Stannett, V. T. J. Appl. Polym. Sci. 1986, 31, 1619.10.1002/app.1986.070310608Google Scholar
20. (a) Cook, R. F.; Liniger, E. G. Mater. Res. Soc. Proc., “Low Dielectric Constant Materials IV”, 1998, p. 171.10.1557/PROC-511-171Google Scholar
(b) Simonyi, E. F.; Lee, K.-W.; Cook, R. F.; Liniger, E. G. Mater. Res. Soc. Proc., “Low Dielectric Constant Materials IV”, 1998 p. 157.10.1557/PROC-511-157Google Scholar
(c) Cook, R. F.; Liniger, E. G.; Klaus, D. R.; Simonyi, E. E.; Cohen, S. A. Mater. Res. Soc. Proc., “Low Dielectric Constant Materials IV”, 1998 p. 33.10.1557/PROC-511-33Google Scholar