Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-28T16:02:26.669Z Has data issue: false hasContentIssue false

Polyimide/Norganic Composite - Interpenetrating Polymer Network For Stable Second-Order Nonlinear Optics

Published online by Cambridge University Press:  16 February 2011

Sutiyao Marturunkakul
Affiliation:
Center for Advanced Materials, Departments of Chemistry, University of Massachusetts Lowell, Lowell, MA 01854, USA
Jeng-I Chen
Affiliation:
Center for Advanced Materials, Departments of Chemistry, University of Massachusetts Lowell, Lowell, MA 01854, USA
Lian Li
Affiliation:
Center for Advanced Materials, Department of Physics, University of Massachusetts Lowell, Lowell, MA 01854, USA
Xin Li Jiang
Affiliation:
Center for Advanced Materials, Department of Physics, University of Massachusetts Lowell, Lowell, MA 01854, USA
Ru Jong Jeng
Affiliation:
Center for Advanced Materials, Departments of Chemistry, University of Massachusetts Lowell, Lowell, MA 01854, USA
Jayant Kumar
Affiliation:
Center for Advanced Materials, Department of Physics, University of Massachusetts Lowell, Lowell, MA 01854, USA
Sukant K. Tripathy
Affiliation:
Center for Advanced Materials, Departments of Chemistry, University of Massachusetts Lowell, Lowell, MA 01854, USA
Get access

Abstract

A new class of IPN system has been prepared and investigated. This IPN system combines the polybismaleinimide network and the NLO-active phenoxysilicon network. The second-order NLO coefficients, d33, values of the samples range from 2.5 to 6.7 pm/V depending on the composition and the processing conditions. The temporal stability of the second-order nonlinearities for these samples at 110 °C varies from 47 to 88 % retention after 274 h.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. (a) Twieg, R.J. and Jain, K. in Nonlinear Optical Properties of Organic and Polymeric Materials, edited by Williams, D.J. (ACS Symposium Series 233, AMerican Chemical Society, Washington, DC, 1982) p 57.CrossRefGoogle Scholar
(b) Nonlinear Optical Properties of Organic Molecules and Crystal, edited by Chemia, D.S. and Zyss, J. (Academic Press, New York, 1987) vol. 1 and 2.Google Scholar
2. (a) Prasad, P.N. and Williams, D.J., Introduction to Nonlinear Optical Effects in molecules and Polymers (John Wiley & Sons, New York, 1991) pp.59260.Google Scholar
(b) Eaton, D.F., Science 253, 281 (1991).Google Scholar
3. (a) Eich, M., Reck, B., Yoon, D.Y., Willson, C.G., and Bjorklund, G.C., J. Appl. Phys. 66, 3241 (1989).CrossRefGoogle Scholar
(b) Mandai, B.K., Kumar, J., Huang, J.C., and Tripathy, S.K., Makromol. Chem., Rapid Commun. 12, 63 (1991).CrossRefGoogle Scholar
(C) Jeng, R.J., Chen, Y.M., Kumar, J., and Tripathy, S.K., J. Macromol. Science-Pure Appl. Chem. A 29, 1115 (1992).Google Scholar
(d) Shi, Y., Ranon, P.M., Steier, W.H., Xu, C., Wu, B., and Dalton, L.R., Appl. Phys. Lett. 63, 16 (1993).CrossRefGoogle Scholar
4. (a) Marturunkakul, S., Chen, J.I., Li, L., Jeng, R.J., Kumar, J., and Tripathy, S.K., Chem. Mater. 5, 592 (1993).Google Scholar
(b) Marturunkakul, S., Kumar, J., and Tripathy, S.K., Proc. Am. Chem. Soc, Div. Polym. Mat.: Sci. & Eng. 69, 436 (1993).Google Scholar
(C) Chen, J.I., Marturunkakul, S., Li, L., Jeng, R.J., Kumar, J., and Tripathy, S.K., Macromolecules, in press.Google Scholar
5. (a) Stähelin, M., Burland, D.M., Ebert, M., Miller, R.D., Smith, B.A., Twieg, R.J., Volksen, W., and Walsh, C.A., Appl. Phys. Lett. 61, 1626 (1992).Google Scholar
(b) Kim, J., Plawsky, J.L., Wagenen, E.V., and Korenowski, G.M., Chem. Mater. 5, 1118 (1993).Google Scholar
(c) Jungbauer, D., Reck, B., Twieg, R., Yoon, D.Y., Willson, C.G., and Swalen, J.D., Appl. Phys. Lett. 56, 2610 (1990).Google Scholar
6. (a) Wu, J.W., Valley, J.F., Ermer, S., Binkley, E.S., Kenney, J.T., Lipscomb, G.F., and Lytel, R., Appl. Phys. Lett. 58, 225 (1991).Google Scholar
(b) Hubbard, M.A., Mark, T.J., Lin, W., and Wong, G.K., Chem. Mat. 4, 965 (1992).CrossRefGoogle Scholar
7. Jeng, R.J., Chen, Y.M., Chen, J.I., Kumar, J., and Tripathy, S.K., Macromolecules 26, 2530 (1993).Google Scholar
8. Jeng, R.J., Chen, Y.M., Jain, A.K., Kumar, J., and Tripathy, S.K., Chem. Mater. 4, 972 (1992).Google Scholar
9. (a) Singer, K.D., Sohn, J.E., and Lalama, S.J., Appl. Phys. Lett. 49, 248 (1986).Google Scholar
(b) Mortazavi, M.A., Knoesen, A., Kowel, S.T., Higgins, B.G., and Dienes, A., J. Opt. Soc. Am. B, 6, 733 (1989).Google Scholar
(c) Jeng, R.J., Chen, Y.M., Jain, A.K., Tripathy, S.K., and Kumar, J., Optics Commun. 89, 212 (1992).Google Scholar
10. (a) Silverstein, R.M., Bassler, G.C., and Morrill, T.C., Spectrometric Identification of Organic Compounds (John Wiley and Sons, New York, 1981) pp. 95125.Google Scholar
(b) Lin-Vien, D., Colthup, N.B., Fateley, W.G., and Grasselli, J.G., The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules (Academic Press, San Diego, 1991) pp. 10233.Google Scholar
11. Monsanto Chemical Co. Material data sheet for Skybond 3030. Publication no. 8225, 1993.Google Scholar
12. Lindsay, G.A., Henry, R.A., Hoover, J.M., Knoesen, A., and Mortazavi, M.A., Macromolecules 25, 4888 (1992).Google Scholar
13. Lind, A.C. and Fry, C.G., Polym. Mater. Sci. Eng. 59, 466 (1988).Google Scholar