Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-28T14:56:37.077Z Has data issue: false hasContentIssue false

Poly(1,3-Butylene Fumerate) and Poly(1,3-Butylene Fumerate)-co-(1,3-Butylene Maleate) as Electrospun Scaffold Materials

Published online by Cambridge University Press:  31 January 2011

Kirsten Nicole Cicotte
Affiliation:
[email protected], University of New Mexico, Center for Biomedical Engineering, 1 University New Mexico, MSC 01 1141, Albuquerque, New Mexico, 87131, United States
Shawn M. Dirk
Affiliation:
[email protected], Sandia National Laboratories, Organic Materials, P.O. Box 5800, MS 0888, Albuquerque, New Mexico, 87185, United States
Elizabeth Hedberg-Dirk
Affiliation:
[email protected], University of New Mexico, Chemical and Nuclear Engineering, Center for Biomedical Engineering, MSC01 1141, 2041 Centennial Engineering Center, Albuquerque, New Mexico, 87131-0001, United States, 505-277-5906
Get access

Abstract

Poly(butylene fumerate) (PBF) and poly(butylene fumerate)-co-(butylene maleate) (PBFcBM) have been synthesized from the ring opening and condensation reactions of maleic anhydride (MA) and 1,3-butanediol (BD). PBFcBM synthesized in this way contains greater than 85% maleate groups. Both PBF and PBFcBM have a glass transition temperature (Tg) below room temperature and therefore cannot be electrospun using the conventional electrospinning process as a non-porous film results. To facilitate production of nonwoven micro- and nano-fiber mats, a UV-source (λ=356 nm) was used in combination with a photoinitator loaded polymer solution to initiate the crosslinking reaction of the fumerate and maleate functional groups as the fibers were produced. The resulting non-woven fiber mats are potentially suitable scaffolds for tissue engineering and drug delivery application.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Peter, S. J.; Suggs, L. J.; Yaszemski, M. J.; Engel, P. S.; Mikos, A. G., J. Biomater. Sci., Polym. Ed. 10, 363 1999.Google Scholar
2 Fisher, J. P.; Holland, T. A.; Dean, D.; Engel, P. S.; Mikos, A. G., J. Biomater. Sci., Polym. Ed. 12, 673 2001.Google Scholar
3 Cristobal, L. V.; Mendoza Gilberto, A. P., Polym. Bull. (Berlin) 23, 577 1990.Google Scholar
4 Cicotte, K.N.; Hedberg-Dirk, E.L.; Dirk, S.M., J. Appl. Polymer Sci. submitted 2009.Google Scholar
5 Larez, V.; Cristobal, J.; Perdomo-Mendoza, G. A., Polym. Bull. (Berlin) 26, 313 1991.Google Scholar
6 Larez, V.; Cristobal, J.; Perdomo-Mendoza, G. A., J. Appl. Polym. Sci. 47, 121 1993.Google Scholar
7 Larez V., C. J.; Perdomo Mendoza, G. A., J. Appl. Polym. Sci. 43, 1605 1991.Google Scholar
8 Vlad, S.; Oprea, S.; Ciobanu, C.; Bulacovschi, V., Rev. Roum. Chim. 44, 693 2000.Google Scholar
9 Gueldry, S.; Bralet, J., Metab. Brain Dis. 10, 293 1995.Google Scholar