Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-23T08:22:31.795Z Has data issue: false hasContentIssue false

Polarization Aspects of Localized Optical Spots Obtained Using Plasmonic Nano-Antennas

Published online by Cambridge University Press:  17 April 2019

Erdem Ogut
Affiliation:
Sabanci University, Faculty of Engineering and Natural Sciences, Istanbul, 34956, Turkey
Kursat Sendur
Affiliation:
Sabanci University, Faculty of Engineering and Natural Sciences, Istanbul, 34956, Turkey
Get access

Abstract

Electromagnetic radiation beyond the diffraction limit with a particular polarization emerges as a need for plasmonic applications. One of these applications is all-optical magnetic recording, which requires circularly-polarized electromagnetic radiation. In this study, a plasmonic cross-dipole nano-antenna is illuminated with diffraction-limited linearly polarized radiation. An optimal configuration for the nano-antenna and the polarization angle of the incident light is identified to obtain linearly, circularly, and elliptically polarized optical spots beyond the diffraction limit. The Poincaré sphere representation is utilized to visually present calculated Stokes parameters for optical spots with linear, circular, and elliptical polarizations from specific antenna geometries.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kikkawa, J. M. and Awschalom, D. D., Science 287, 473476 (2000).Google Scholar
2. Neale, S., Macdonald, M., Dholakia, K., and Krauss, T. F., Nature 4, 530533 (2005).Google Scholar
3. Matsuhisa, Y., Huang, Y., Zhou, Y., and Whu, S. T., Opt. Express 15, 626–622 (2007).Google Scholar
4. Hassey, R., Swain, E. J., Hammer, N. I., Venkataraman, D., and Barnes, M. D., Science 314, 14371439 (2006).Google Scholar
5. Peng, X., Komatsu, N., Bhattacharya, S., Shimawaki, T., Aonuma, S., Kimura, T., Osuka, A., Nature 2, 361365 (2007).Google Scholar
6. Volakis, J., Antenna Engineering Handbook (McGraw-Hill Professional, 2007).Google Scholar
7. Stanciu, C. D. et al., Phys. Rev. Lett. 99, 047601 (2007).Google Scholar
8. Hohlfeld, J., Stanciu, C. D., and Rebei, A., Appl. Phys. Lett. 94, 152504 (2009).Google Scholar
9. Biagioni, P., Huang, J. S., Duo, L., Finazzi, M. and Hecht, B., “Cross Resonant Optical Antenna,” Phys. Rev. Lett. 102, 256801 (2009).Google Scholar
10. Ogut, E., Kiziltas, G., and Sendur, K., “Circularly-polarized localized near-field radiation at the nanoscale,” Appl. Phys. B 99, 6774 (2010).Google Scholar
11. Biagioni, P., Savoini, M., Huang, J. S., Duo, L., Finazzi, M. and Hecht, B., “Near-field polarization shaping by a near-resonant plasmonic cross antenna,” Phys. Rev. B 80, 153409 (2009).Google Scholar
12. Grober, R. D., Schoelkopf, R. J., and Prober, D. E., Appl. Phys. Lett. 70, 1354-1356 (1997).Google Scholar
13. Sendur, K. and Challener, W., J. Microsc. 210, 279283 (2003).Google Scholar
14. Crozier, K. B., Sundaramurthy, A., Kino, G. S., and Quate, C. F., J. Appl. Phys. 94, 4632 (2003).Google Scholar
15. Fromm, D. P. et al., J. Appl. Phys. 4, 957 (2004).Google Scholar
16. Muhlschlegel, P. et al., Science 308, 1607-1609 (2005).Google Scholar
17. Novotny, L., Phys. Rev. Lett. 98, 266802, (2007).Google Scholar
18. Jackel, F., Kinkhabwala, A. A., and Moerner, W. E., Chem. Phys. Lett. 446, 339343 (2007).Google Scholar
19. Jin, E. X. and Xu, X., J. Comput. Theor. Nanosci. 5, 214218 (2008).Google Scholar
20. Sendur, K. and Baran, E., Appl. Phys. B 96, 325335 (2009).Google Scholar
21. Palik, E.D., Handbook of Optical Constants of Solids (Academic Press, San Diego, 1998)Google Scholar
22. Kong, J. A., Electromagnetic Wave Theory (Wiley, New York, NY, 1990).Google Scholar