Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-20T05:28:52.910Z Has data issue: false hasContentIssue false

pO2 stability of Ba0.5Sr0.5Co0.8Fe0.2O3-δ

Published online by Cambridge University Press:  09 March 2011

Stefan F. Wagner
Affiliation:
Institut für Werkstoffe der Elektrotechnik (IWE), Karlsruher Institut für Technologie (KIT), Adenauerring 20 b, 76131 Karlsruhe/Germany
Simon Taufall
Affiliation:
Institut für Werkstoffe der Elektrotechnik (IWE), Karlsruher Institut für Technologie (KIT), Adenauerring 20 b, 76131 Karlsruhe/Germany
Christian Niedrig
Affiliation:
Institut für Werkstoffe der Elektrotechnik (IWE), Karlsruher Institut für Technologie (KIT), Adenauerring 20 b, 76131 Karlsruhe/Germany
Holger Götz
Affiliation:
Institut für Werkstoffe der Elektrotechnik (IWE), Karlsruher Institut für Technologie (KIT), Adenauerring 20 b, 76131 Karlsruhe/Germany
Wolfgang Menesklou
Affiliation:
Institut für Werkstoffe der Elektrotechnik (IWE), Karlsruher Institut für Technologie (KIT), Adenauerring 20 b, 76131 Karlsruhe/Germany
Stefan Baumann
Affiliation:
Institut für Energie- und Klimaforschung (IEK-1), Forschungszentrum Jülich, 52425 Jülich/Germany
Ellen Ivers-Tiffée
Affiliation:
Institut für Werkstoffe der Elektrotechnik (IWE), Karlsruher Institut für Technologie (KIT), Adenauerring 20 b, 76131 Karlsruhe/Germany DFG-Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe/Germany
Get access

Abstract

The mixed-conducting perovskite oxide Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF), given its outstanding oxygen ionic and electronic transport properties, is considered a promising material composition for oxygen transport membranes (OTM) operated at high temperatures.

Its long-term stability under operating conditions is, however, still an important issue. Although the incompatibility of BSCF with CO2-containing atmospheres can be avoided by appropriate means (oxyfuel processes in the absence of carbon dioxide), the thermal as well as the chemical stability of BSCF itself are still under thorough investigation.

This work is focused on the stability of BSCF in the targeted temperature range for OTM applications (700…900 °C) and in atmospheres with low oxygen contents. Previous studies in literature suggest limited chemical stability below oxygen partial pressures pO2 of around 10-6 bar.

By using a coulometric titration method based on a zirconia “oxygen pump” setup, precise control of the oxygen partial pressure pO2 between 1 bar and 10-18 bar was facilitated. Combining electrical measurements on dense ceramic bulk samples performed as a function of pO2 with an XRD phase composition study of single phase BSCF powders subjected to various pO2 treatments, an assessment of the chemical stability of BSCF is facilitated as a function of oxygen partial pressure. It could thus be shown that the pO2 stability limit is considerably lower than previously assumed in literature.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Bouwmeester, H. J. M. and Burggraaf, A. J., “Dense Ceramic Membranes for Oxygen Separation”, in Gellings, P. J. and Bouwmeester, H. J. M. (Eds.), The CRC Handbook of Solid State Electrochemistry, Boca Raton, FL: CRC Press, pp. 481–553 (1997).Google Scholar
[2] Shao, Z. P., Yang, W. S., Cong, Y., Dong, H., Tong, J. H. and Xiong, G. X., Journal of Membrane Science 172, 177 (2000).Google Scholar
[3] Vente, J. F., Haije, W. G. and Rak, Z. S., Journal of Membrane Science 276, 178 (2006).Google Scholar
[4] Shao, Z. P. and Haile, S. M., Nature 431, 170 (2004).Google Scholar
[5] Chen, Z. H., Ran, R., Zhou, W., Shao, Z. P. and Liu, S. M., Electrochimica Acta 52, 7343 (2007).Google Scholar
[6] Bucher, E., Egger, A., Ried, P., Sitte, W. and Holtappels, P., Solid State Ionics 179, 1032 (2008).Google Scholar
[7] Girdauskaite, E., Ullmann, H., Vashook, V. V., Guth, U., Caraman, G. B., Bucher, E. and Sitte, W., Solid State Ionics 179, 385 (2008).Google Scholar
[8] Wang, L., Merkle, R., Maier, J., Acarturk, T. and Starke, U., Applied Physics Letters 94, 071908–1 (2009).Google Scholar
[9] Burriel, M., Niedrig, C., Menesklou, W., Wagner, S. F., Santiso, J. and Ivers-Tiffée, E., Solid State Ionics 181, 602 (2010).Google Scholar
[10] Yan, A., Cheng, M., Dong, Y. L., Yang, W. S., Maragou, V., Song, S. Q. and Tsiakaras, P., Applied Catalysis B-Environmental 66, 64 (2006).Google Scholar
[11] Bucher, E., Egger, A., Caraman, G. B. and Sitte, W., J. Electrochem. Soc. 155, B1218 (2008).Google Scholar
[12] Zhou, W., Ran, R. and Shao, Z. P., J. Power Sources 192, 231 (2009).Google Scholar
[13] Svarcova, S., Wiik, K., Tolchard, J., Bouwmeester, H. J. M. and Grande, T., Solid State Ionics 178, 1787 (2008).Google Scholar
[14] Yang, Z., Harvey, A. S., Infortuna, A. and Gauckler, L. J., J. Appl. Cryst. 42, 153 (2009).Google Scholar
[15] Yang, Z., Harvey, A. S., Infortuna, A., Schoonman, J. and Gauckler, L. J., Journal of Solid State Electrochemistry, in press (2010).Google Scholar
[16] Müller, D. N., De Souza, R. A., Weirich, T. E., Roehrens, D., Mayer, J. and Martin, M., Physical Chemistry Chemical Physics 12, 10320 (2010).Google Scholar
[17] Efimov, K., Xu, Q. and Feldhoff, A., Chemistry of Materials 22, 5866 (2010).Google Scholar
[18] Arnold, M., Gesing, T. M., Martynczuk, J. and Feldhoff, A., Chemistry of Materials 20, 5851 (2008).Google Scholar
[19] Wei, B., Lu, Z., Huang, X. Q., Miao, J. P., Sha, X. Q., Xin, X. S. and Su, W. H., Journal of the European Ceramic Society 26, 2827 (2006).Google Scholar
[20] Zhou, W., Ran, R., Shao, Z. P., Zhuang, W., Jia, J., Gu, H. X., Jin, W. Q. and Xu, N. P., Acta mater. 56, 2687 (2008).Google Scholar
[21] Niedrig, C., Burriel, M., Taufall, S., Wagner, S. F., Menesklou, W. and Ivers-Tiffee, E., Journal of Membrane Science, to be published (2010).Google Scholar
[22] McIntosh, S., Vente, J. F., Haije, W. G., Blank, D. H. A. and Bouwmeester, H. J. M., Solid State Ionics 177, 1737 (2006).Google Scholar
[23] Ovenstone, J., Jung, J. I., White, J. S., Edwards, D. D. and Misture, S. T., Journal of Solid State Chemistry 181, 576 (2008).Google Scholar
[24] Beetz, K., Die geschlossene Festelektrolyt-Sauerstoffpumpe [in German] , Düsseldorf: VDI Verlag(1993).Google Scholar
[25] Jung, J. I., Misture, S. T. and Edwards, D. D., Journal of Electroceramics 24, 261 (2010).Google Scholar