Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-28T14:35:02.807Z Has data issue: false hasContentIssue false

Plastic Deformation of Glassy Polymers: Correlation Between Shear Activation Volume and Entanglement Density

Published online by Cambridge University Press:  11 February 2011

Janet Ho
Affiliation:
Institute of Materials Science, University of Connecticut, Storrs, CT 06269, U.S.A.
Leon Govaert
Affiliation:
Dutch Polymer Institute (DPI), Eindhoven University of Technology, Eindhoven, The Netherlands.
Marcel Utz
Affiliation:
Institute of Materials Science, University of Connecticut, Storrs, CT 06269, U.S.A.
Get access

Abstract

The shear activation volumes of miscible polystyrene-poly(2,6-dimethyl-1,4-phenylene oxide) (PS-PPO) blends at different PS-PPO ratios were determined experimentally by both plane strain and uniaxial compression at constant strain rates. We find that the same correlation between the shear activation volume and the entanglement density ρe holds for the blend as well as for various pure glassy polymers: . Since the shear activation volume is closely related to the size of the plastic shear zones, this correlation suggests that the cooperativity of the elementary processes of plastic deformation in glassy polymers scales with the entanglement density.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Argon, A. S., Inelastic Deformation and Fracture of Glassy Solids, vol. 6 (Plastic Deformation and Fracture of Materials) of Materials Science and Technology, VCH: Weinheim, 1993 pp. 462508.Google Scholar
[2] Arruda, E. M.; Boyce, M. C.; Jayachandran, R. Mechanics of Materials 1995, 19, 193212.CrossRefGoogle Scholar
[3] Ward, I. M. Mechanical Properties of Solid Polymers, 2nd ed., Wiley: Chichester, 1990.Google Scholar
[4] Tervoort, T. A.; Govaert, L. E. J. Rheol. 2000, 44, 12631277.CrossRefGoogle Scholar
[5] Spathis, G.; Kontou, E. J. Appl. Polym. Sci. 2001, 79, 25342542.3.0.CO;2-G>CrossRefGoogle Scholar
[6] Deng, D.; Argon, A. S.; Yip, S. Phil. Trans. R. Soc. Lond. A 1989, 329, 549573;Google Scholar
Deng, D.; Argon, A. S.; Yip, S. Phil. Trans. R. Soc. Lond. A 1989, 329 575– 593;Google Scholar
Deng, D.; Argon, A. S.; Yip, S. Phil. Trans. R. Soc. Lond. A 1989, 329 595612;Google Scholar
Deng, D.; Argon, A. S.; Yip, S. Phil. Trans. R. Soc. Lond. A 1989, 329 613640.Google Scholar
[7] Mott, P. H.; Argon, A. S.; Suter, U. W. Phil. Mag. A 1993, 67, 931978.CrossRefGoogle Scholar
[8] Hutnik, M.; Argon, A. S.; Suter, U. W. Macromolecules 1993, 26, 10971108.CrossRefGoogle Scholar
[9] Srolovitz, D.; Vitek, V.; Egami, T. Acta Met. 1983, 31, 335352.CrossRefGoogle Scholar
[10] Oleynik, E. F.; Rudnev, S. N.; Salamatina, O. B.; Topolkaraev, V. A. Makromol. Chem., Macromol. Symp. 1992, 53, 7780.CrossRefGoogle Scholar
[11] Oleynik, E. F.; Salamatina, O. B.; Rudnev, S. N.; Shenogin, S. V. Polym. Adv. Technol. 1995, 6, 19.CrossRefGoogle Scholar
[12] Graessley, W. W. Adv. Polym. Sci. 1974, 16, 1.CrossRefGoogle Scholar
[13] Cizek, E. P., U.S. Patent 3383435, 1968.Google Scholar
[14] Lomellini, P. Macromol. Theory Simul. 1994, 3, 567574.CrossRefGoogle Scholar
[15] Eshelby, J. D. in Progress in Solid Mechanics, Sneddon, I. N.; Hill, R., Eds., vol. 2, North Holland: Amsterdam, 1961 pp. 87140.Google Scholar
[16] Halsey, G.; White, H. J.; Eyring, H. Text. Res. J. 1945, 15, 295311.CrossRefGoogle Scholar
[17] Ho, J.; Govaert, L.; Utz, M. submitted for publication 2002.Google Scholar
[18] Fetters, L.; Lohse, D.; Richter, D.; Witten, T.; Zirkel, A. Macromolecules 1994, 27, 46394647.CrossRefGoogle Scholar
[19] Tsenoglou, C. J. Polym. Sci., Part B: Polym. Phys. 1988, 26, 23292339.CrossRefGoogle Scholar
[20] Graessley, W. W. J. Polym. Sci., Part B: Polym. Phys. 1980, 18, 2734.Google Scholar
[21] Argon, A. S.; Bulatov, V. V.; Mott, P. H.; Suter, U. W. J. Rheol. 1995, 39, 377399.CrossRefGoogle Scholar
[22] Arruda, E. M.; Boyce, M. C. Int. J. Plast. 1993, 9, 697720.CrossRefGoogle Scholar
[23] Donald, A. M.; Kramer, E. J.; Bubeck, R. A. J. Polym. Sc. Polym. Phys. 1982, 20, 11291141.CrossRefGoogle Scholar
[24] Lin, J.-H.; Yang, A. C.-M. Macromolecules 2001, 34, 36983705.CrossRefGoogle Scholar
[25] Donald, A. M.; Kramer, E. J. Polymer 1982, 23, 461465.CrossRefGoogle Scholar
[26] Henkee, C. S.; Kramer, E. J. J. Polym. Sc. Polym. Phys. 1984, 22, 721737.CrossRefGoogle Scholar