Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-28T09:20:02.241Z Has data issue: false hasContentIssue false

Plasmon-polariton signature in the transmission and reflection spectra of one-dimensional metamaterial heterostructures

Published online by Cambridge University Press:  19 November 2013

E. Reyes-Gómez
Affiliation:
Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
S. B. Cavalcanti
Affiliation:
Instituto de Física, Universidade Federal de Alagoas, Maceió-AL, 57072-970, Brazil
L. E. Oliveira
Affiliation:
Instituto de Física, Univ. Estadual de Campinas- Unicamp, Campinas - SP, 13083-859, Brazil
Get access

Abstract

The transmission and reflection properties of a meta-stack composed of a periodic AB arrangement of an air(A)/metamaterial(B) bilayer is presented, with the multi layered system embedded between two semi-infinite layers of the A material. For oblique incidence, a finite projection along the growth direction of the electric or magnetic field of the incident wave associated with the TM or TE modes, respectively, leads to a coupling of the photon modes with the bulk electric or magnetic metamaterial plasmons, in each layer of the meta-stack. This field-matter coupling gives rise to plasmon-polariton modes and signatures of electric or magnetic longitudinal bulk-plasmon polariton modes in the transmission, as well as in the reflection properties of the meta-stack, by means of a plasmon-polariton gap. Such features survive even in the case of a single bilayer and experimental observation should be, therefore, easily achieved.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Veselago, V. G., Sov. Phys.Usp. 10, 509 (1968).CrossRefGoogle Scholar
Zeludhev, N. I., Science 328, 582 (2010), and references therein.Google Scholar
Rosa, F. S. S., Dalvit, D. A. R., and Milonni, P. W., Phys. Rev. Lett. 100, 183602 (2008).CrossRefGoogle Scholar
Li, J., Zhou, L., Chan, C. T., and Sheng, P., Phys. Rev. Lett. 90, 083901 (2003); H. Jiang, H. Chen, H. Li, Y. Zhang, and S. Zhu, Appl. Phys. Lett. 83, 5386(2003); I. V. Shadrivov, A. A. Sukhorukov, and Y. S. Kivshar, Appl. Phys. Lett. 82, 3820 (2003); H. Daninthe, S. Foteinopoulou, and C.M. Soukoulis, Photon. and Nanostruc. – Fund. and Appl. 4, 123 (2006).CrossRefGoogle Scholar
Cavalcanti, S. B., de Dios-Leyva, M., Reyes-Gómez, E., and Oliveira, L. E., Phys. Rev. B 74, 153102 (2006); ibid., Phys. Rev. E 75, 026607(2007).Google Scholar
Silvestre, E., Depine, R. A., Martínez-Ricci, M. L., and Monsoriu, J. A., J. Opt. Soc. Am. B 26, 581 (2009); J. Schilling, Nature Photon. 5, 449(2011).Google Scholar
Reyes-Gómez, E., Mogilevtsev, D., Cavalcanti, S. B., Carvalho, C. A. A., and Oliveira, L. E., Europhys. Lett. 88, 24002 (2009).CrossRefGoogle Scholar
de Carvalho, C. A. A., Cavalcanti, S. B., Reyes-Gómez, E., and Oliveira, L. E., Phys. Rev. B 83, 081408(R) (2011); ibid., Superl. and Microstruct. 54, 96(2013).CrossRefGoogle Scholar
Mogilevtsev, D., Pinheiro, F. A., dos Santos, R. R., Cavalcanti, S. B., and Oliveira, L. E., Phys. Rev. B 84, 094204 (2011); E. Reyes-Gómez, S. B. Cavalcanti, and L. E. Oliveira, J. Phys.: Cond. Matter 25, 075901(2013).CrossRefGoogle Scholar
Reyes Gómez, E., Raigoza, N., Cavalcanti, S. B., de Carvalho, C. A. A., and Oliveira, L. E., Phys. Rev. B 81, 153101 (2010); J. R. Mejía-Salazar, N. Porras-Montenegro, E. Reyes-Gómez, S. B. Cavalcanti, and L. E. Oliveira, Europhys. Lett. 95, 24004(2011).CrossRefGoogle Scholar