Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-12-01T09:15:37.679Z Has data issue: false hasContentIssue false

Plasma Enhanced Chemical Vapour Deposited Carbon Nanotubes for Field Emission Applications

Published online by Cambridge University Press:  15 March 2011

K. B. K. Teo
Affiliation:
Engineering Department, Cambridge University, Trumpington St, Cambridge CB2 1PZ, UK
G. Pirio
Affiliation:
Thales Research and Technology, Domaine de Corbeville, 91404 Orsay Cedex, France
S.B. Lee
Affiliation:
Microelectronics Research Centre, Cavendish Laboratory, Cambridge University, Madingley Road, Cambridge CB3 0HE, UK
M. Chhowalla
Affiliation:
Engineering Department, Cambridge University, Trumpington St, Cambridge CB2 1PZ, UK
P. Legagneux
Affiliation:
Thales Research and Technology, Domaine de Corbeville, 91404 Orsay Cedex, France
Y. Nedellec
Affiliation:
Thales Research and Technology, Domaine de Corbeville, 91404 Orsay Cedex, France
D.G. Hasko
Affiliation:
Microelectronics Research Centre, Cavendish Laboratory, Cambridge University, Madingley Road, Cambridge CB3 0HE, UK
H. Ahmed
Affiliation:
Microelectronics Research Centre, Cavendish Laboratory, Cambridge University, Madingley Road, Cambridge CB3 0HE, UK
D. Pribat
Affiliation:
Thales Research and Technology, Domaine de Corbeville, 91404 Orsay Cedex, France
G.A.J. Amaratunga
Affiliation:
Engineering Department, Cambridge University, Trumpington St, Cambridge CB2 1PZ, UK
W.I. Milne
Affiliation:
Engineering Department, Cambridge University, Trumpington St, Cambridge CB2 1PZ, UK
Get access

Abstract

Plasma Enhanced Chemical Vapour Deposition is an extremely versatile technique for directly growing multiwalled carbon nanotubes onto various substrates. We will demonstrate the deposition of vertically aligned nanotube arrays, sparsely or densely populated nanotube forests, and precisely patterned arrays of nanotubes. The high-aspect ratio nanotubes (~50 nm in diameter and 5 microns long) produced are metallic in nature and direct contact electrical measurements reveal that each nanotube has a current carrying capacity of 107-108 A/cm2, making them excellent candidates as field emission sources. We examined the field emission characteristics of dense nanotube forests as well as sparse nanotube forests and found that the sparse forests had significantly lower turn-on fields and higher emission currents. This is due to a reduction in the field enhancement of the nanotubes due to electric field shielding from adjacent nanotubes in the dense nanotube arrays. We thus fabricated a uniform array of single nanotubes to attempt to overcome these issues and will present the field emission characteristics of this.

Type
Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Heer, W.A. de, Chatelaine, A., and Ugarte, D., Science 270, 1179 (1995).Google Scholar
2. Collins, P.G. and Zettl, A., Appl. Phys. Lett. 69, 1969 (1996).Google Scholar
3. Bonard, J.M., Salvetat, J.P., Stockli, T., Forro, L., and Chatelain, A., Appl. Phys. A 69, 245 (1999).Google Scholar
4. Zhu, W., Bower, C., Zhou, O., Kochanski, G., and Jin, S., Appl. Phys. Lett. 75, 873 (1999).Google Scholar
5. Kim, J.M., Choi, W.B., Lee, N.S., and Jung, J.E., Diam. Relat. Mater. 9, 1184 (2000).Google Scholar
6. Ijima, S., Nature 363, 603 (1993).Google Scholar
7. Thess, A., Lee, R., Nikolaev, P., Dai, H.J., Petit, P., Robert, J., Xu, C.H., Lee, Y.H., Kim, S.G., Rinzer, A.G., Colbert, D.T., Scuseria, G.E., Tomanek, D., Fischer, J. E., and Smalley, R.E., Science 273, 483 (1996).Google Scholar
8. Kong, J., Cassell, A.M., and Dai, H., Chem. Phys. Lett. 292, 567 (1998).Google Scholar
9. Kong, J., Soh, H.T., Cassell, A.M., Quate, C.F. and Dai, H., Nature 395, 878 (1998).Google Scholar
10. Sveningsson, M., Morjan, R.-E., Nerushev, O.A., Sato, Y., Bäckström, J., Campbell, E.E.B., Rohmund, F., App. Phys. A 73, 409 (2001).Google Scholar
11. Ren, Z.F., Huang, Z.P., Xu, J.W., Wang, J.H., Bush, P., Siegal, M.P., and Provencio, P.N., Science 282, 1105 (1998).Google Scholar
12. Bower, C., Zhu, W., Jin, S., and Zhou, O., Appl. Phys. Lett. 77, 830 (2000).Google Scholar
13. Merkulov, V.I., Lowndes, D.H., Wei, Y.Y., Eres, G., and Voelkl, E., Appl. Phys. Lett. 76, 3555 (2000).Google Scholar
14. Chhowalla, M., Teo, K.B.K., Ducati, C., Rupesinghe, N.L., Amaratunga, G.A.J., Ferrari, A.C., Roy, D., Robertson, J. and Milne, W.I., J. Appl. Phys. 90, 5308 (2001).Google Scholar
15. Teo, K.B.K., Chhowalla, M., G.A Amaratunga, J., Milne, W.I., Pirio, G., Legagneux, P., Wycisk, F., and Pribat, D., Mat. Res. Soc. Symp. Proc. 675, W9.1.Google Scholar
16. Teo, K.B.K., Pirio, G., Legagneux, P., Wyczisk, F., Chhowalla, M., Hasko, D. G., Ahmed, H., Pribat, D., Amaratunga, G.A.J., and Milne, W. I., Appl. Phys. Lett., submitted Nov 2001.Google Scholar
17. Teo, K.B.K., Chhowalla, M., Amaratunga, G.A.J., Milne, W. I., Hasko, D.G., Pirio, G., Legagneux, P., Wyczisk, F., and Pribat, D., Appl. Phys. Lett. 79, 1534 (2001).Google Scholar
18. Teo, K.B.K., Pirio, G., Chhowalla, M., Lee, S.B., Legagneux, P., Hasko, D.G., Pribat, D., Ahmed, H., Amaratunga, G.A.J., and Milne, W.I., Nanotechnology, submitted Dec 2001.Google Scholar
19. Teo, K.B.K., Chhowalla, M., Amaratunga, G.A.J., Milne, W.I., Pirio, G., Legagneux, P., Wyczisk, F., Olivier, J., and Pribat, D., J. Vac. Sci. Tech. B., to be published Jan/Feb 2002.Google Scholar
20. Pirio, G., Legagneux, P., Pribat, D., Teo, K. B. K., Chhowalla, M., Amaratunga, G. A. J., and Milne, W. I., Nanotechnology 13, 1 (2002).Google Scholar
21. Lee, S.-B., Teo, K. B. K., Chhowalla, M., Hasko, D.G., Amaratunga, G.A.J., Milne, W.I., and Ahmed, H., in preparation.Google Scholar