Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-28T14:26:59.529Z Has data issue: false hasContentIssue false

Plasma agriculture based on quantitative monitoring of reactions between fungal cells and atmospheric-pressure plasmas

Published online by Cambridge University Press:  24 May 2012

Masafumi Ito
Affiliation:
Department of Electrical and Electronic Engineering, Faculty of Science and Technology, Meijo University 1-501 Shiogamaguchi, Tenpaku-ku, Nagoya 468-8502, Japan
Takayuki Ohta
Affiliation:
Department of Electrical and Electronic Engineering, Faculty of Science and Technology, Meijo University 1-501 Shiogamaguchi, Tenpaku-ku, Nagoya 468-8502, Japan
Keigo Takeda
Affiliation:
Department of Electrical Engineering and Computer Science, Graduate School of Engineering, Nagoya University Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
Get access

Abstract

A high-density non-equilibrium atmospheric pressure plasma (NEAPP) applied for inactivating fungal spores of P. digitatum is introduced as an environmentally safe and rapid-inactivation method. The contributions of ozone, ultra violet (UV) radiation and ground-state atomic oxygen in the NEAPP on the inactivation of the spores are evaluated using colony count method.

The absolute densities of ozone were measured by using ultraviolet absorption spectroscopy. The ozone density increased from 2 to 8 ppm with an increase in the distance from the plasma source, while the inactivation rate decreased. The inactivation rate of plasma was evaluated to be thousand times higher than that of an ozone generator using the integrated number density of ozone. In addition, it was clarified that the contribution of UV radiation to inactivation was not dominant for P. digitatum inactivation by NEAPP by filtering the active species using quartz plate. From these results, we can speculate that the inactivation efficiency of reactive oxygen species (ROS) will be larger than those of others.

In order to investigate the effect of ground-state atomic oxygen as one of ROS, the inactivation of P. digitatum spores using an oxygen radical source that employs a high-density atmospheric-pressure O2/Ar plasma. The absolute O density was measured to be 1.4×1014 and 1.5×1015 cm–3 using vacuum ultra violet absorption spectroscopy (VUVAS) using a microdischarge hollow cathode lamp. The behaviors of the O densities as a function of O2/(Ar+O2) mixture flow rate ratio correspond to that of the inactivation rate. This result indicates that ground-state atomic oxygen is concluded to be the dominant species that causes inactivation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Rundberget, T., Skaar, I., and Flaaoeyen, A., Int. J. Food Microbiol. 90, 181 (2004).10.1016/S0168-1605(03)00291-5Google Scholar
[2] Kinay, P., Mansour, M. F., Gabler, F. M., Margosan, D. A., and Smilanick, J. L., Crop Prot. 26, 647 (2007).Google Scholar
[3] Fridman, A., Plasma Chemistry (Cambridge University Press, New York, 2008).10.1017/CBO9780511546075Google Scholar
[4] Deng, X., Shi, J., and Kong, M. G., IEEE Trans. Plasma Sci. 34, 1310 (2006).Google Scholar
[5] Moisan, M., Barbeau, J., Moreau, S., Pelletier, J., Tabrizian, M., and Yahia, L’H., Int. J. Pharm. 226, 1 (2001).Google Scholar
[6] Laroussi, M., Plasma Process. Polym. 2, 391 (2005).Google Scholar
[7] Wintenberg, K. K-., Hodge, A., Montie, T. C., Deleanu, L., Sherman, D., Roth, J. R., Tsai, P., and Wadsworth, L., J. Vac. Sci. Technol. A17 1539 (1999).10.1116/1.581849Google Scholar
[8] Opretzka, J., Benedikt, J., Awakowicz, P., Wunderlich, J., and von Keudell, A., J. Phys. D: Appl. Phys. 40, 2826 (2007).10.1088/0022-3727/40/9/024Google Scholar
[9] Levif, P., Séguin, J., Moisan, M., and Barbeau, J., Plasma Process. Polym. 8, 617 (2011).10.1002/ppap.201000212Google Scholar
[10] Helmke, A., Hoffmeister, D., Berge, F., Emmert, S., Laspe, P., Mertens, N., Vioel, W., and Weltmann, K. –D., Plasma Process. Polym. 8, 278 (2011).10.1002/ppap.201000168Google Scholar
[11] Burlica, R., Grim, R. G., Shih, K. -Y., Balkwill, D., and Locke, B. R., Plasma Process. Polym. 7, 640 (2010).Google Scholar
[12] von Keudelll, A., Awakowicz, P., Benedikt, J., Raballand, V., Yanguas-Gil, A., Opretzka, J., Flötgen, C., Reuter, R., Byelykh, L., Halfmann, H., Stapelmann, K., Denis, B., Wunderlich, J., Muranyi, P., Rossi, F., Kylián, O., Hasiwa, N., Ruiz, A., Rauscher, H., Sirghi, L., Comoy, E., Dehen, C., Challier, L., and Deslys, J. P., Plasma Process. Polym. 7, 327 (2010).Google Scholar
[13] Oehmigen, K., Hähnel, M., Brandenburg, R., Wilke, Ch., Weltmann, K.-D., and von Woedtke, Th., Plasma Process. Polym. 7, 250 (2010).10.1002/ppap.200900077Google Scholar
[14] Hähnel, M., von Woedtke, Th., and Weltmann, K. –D., Plasma Process. Polym. 7, 244 (2010).Google Scholar
[15] Yasuda, H., Miura, T., Kurita, H., Takashima, K., and Mizuno, A., Plasma Process. Polym. 7, 301 (2010).Google Scholar
[16] Ikawa, S., Kitano, K., and Hamaguchi, S., Plasma Process. Polym. 7, 33 (2010).10.1002/ppap.200900090Google Scholar
[17] Kim, S. J., Chung, T. H., Bae, S. H., and Leem, S. H., Plasma Process. Polym. 6, 676 (2009).10.1002/ppap.200850001Google Scholar
[18] Ricard, A., Canall, C., Villeger, S., and Durand, J., Plasma Process. Polym. 5, 867 (2008).Google Scholar
[19] Kutasi, K., Saoudi, B., Pintassilgo, C. D., Loureiro, J., and Moisan, M., Plasma Process. Polym. 5, 840 (2008).Google Scholar
[20] Zhao, Y., Ogino, A., and Nagatsu, M., Appl. Phys. Lett. 98, 191501 (2011).Google Scholar
[21] Wang, D., Zhao, D., Feng, K., Zhang, X., Liu, D., and Yang, S., Appl. Phys. Lett. 98, 161501 (2011).Google Scholar
[22] Hong, Y. C., Park, H. J., Lee, B. J., Kang, W. –S., and Uhm, H. S., Phys. Plasmas 17, 053502 (2010).Google Scholar
[23] Martines, E., Zuin, M., Cavazzana, R., Gazza, E., Serianni, G., Spagnolo, S., Spolaore, M., Leonardi, A., Deligianni, V., Brun, P., Aragona, M., Castagliuolo, I. and Brun, P. New J. Phys. 11, 115014 (2009).10.1088/1367-2630/11/11/115014Google Scholar
[24] Morfill, G. E., Kong, M. G. and Zimmermann, J. L., New J. Phys. 11, 115011 (2009).10.1088/1367-2630/11/11/115011Google Scholar
[25] Majumdar, A., Singh, R. K., Palm, G. J., and Hippler, R., J. Appl. Phys. 106, 084701 (2009).Google Scholar
[26] Kim, S. J., Chung, T. H., Bae, S. H., and Leem, S. H., Appl. Phys. Lett. 94, 141502 (2009).10.1063/1.3114407Google Scholar
[27] Critzer, V. J., Kelly-Winterberg, K., South, S. L., and Golden, D. A., J. Food. Prot. 70, 2290 (2007).Google Scholar
[28] Perni, S., Liu, D. W., Shama, G., and Kong, M. G., J. Food. Prot. 71, 302 (2008).Google Scholar
[29] Perni, S., Shama, G., and Kong, M. G., J. Food. Prot. 71, 1619 (2008).Google Scholar
[30] Basaran, P., Basaran-Akgul, N., and Oksuz, L., Food Microbiol. 25, 626 (2008).10.1016/j.fm.2007.12.005Google Scholar
[31] Selcuk, M., Oksuz, L., and Basaran, P., Bioresource Tech. 99, 5104 (2008).Google Scholar
[32] Noriega, E., Shama, G., Laca, A., Díaz, M., and Kong, M. G., Food Microbiol. 28, 1293 (2011).Google Scholar
[33] Kim, B., Yun, H., Jung, S., Jung, Y., Jung, H., Choe, W., Jo, C., Food Microbiol., 28, 9 (2011).Google Scholar
[34] Song, H. P., Kim, B., Choe, J. H., Jung, S., Moon, S. Y., Choe, W., and Jo, C., Food Microbiol. 26, 432 (2009).10.1016/j.fm.2009.02.010Google Scholar
[35] Yun, H., Kim, B., Jung, S., Kruk, Z. A., Kim, D. B., Choe, W., and Jo, C., Food Control 21, 1182 (2010).Google Scholar
[36] Schwabedissen, A., Lacinski, P., Chen, X., and Engemann, J., Contrib. Plasma Phys. 47, 551 (2007).10.1002/ctpp.200710071Google Scholar
[37] Chiper, A. S., Chen, W., Mejlholm, O., Dalgaard, P. and Stamate, E., Plasma Sources Sci. Technol. 20, 025008 (2011).Google Scholar
[38] Iseki, S., Ohta, T., Aomatsu, A., Ito, M., Kano, H., Higashijima, Y., and Hori, M., Appl. Phys. Lett. 96, 153704 (2010).Google Scholar
[39] Iseki, S., Hashizume, H., Jia, F., Takeda, K., Ishikawa, K., Ohta, T., Ito, M., and Hori, M., Appl. Phys. Express 4, 116201 (2011).10.1143/APEX.4.116201Google Scholar
[40] Ito, M. and Ohta, T., and Hori, M., J. Korean Phys. Soc. 60, 937 (2012).Google Scholar
[41] Iwasaki, M., Inui, H., Matsudaira, Y., Kano, H., Yoshida, N., Ito, M., and Hori, M., Appl. Phys. Lett. 92 081503 (2008).Google Scholar
[42] Jia, F., Sumi, N., Ishikawa, K., Kano, H., Inui, H., Kularatne, J., Takeda, K., Kondo, H., Sekine, M., Kono, A., and Hori, M., Appl. Phys. Express 4, 026101 (2011).Google Scholar
[43] Inui, H., Takeda, K., Kondo, H., Ishikawa, K., Makoto, S., Kano, H., Yoshida, N., and Hori, M.: Appl. Phys. Express 3 (2010) 126101.Google Scholar
[44] Takashima, S., Hori, M., Goto, T., Kono, A., Ito, M., and Yoneda, K., Appl. Phys. Lett. 75, 3929 (1999).Google Scholar
[45] Eliasson, B., Hirth, M., and Kogelschatz, U., J. Phys. D: Appl. Phys. 20, 1421 (1987).Google Scholar
[46] Kossyi, I. A., Yu Kostinsky, A., Matveyev, A. A. and Silakov, V. P., Plasma Sources Sci. Technol. 1, 207 (1992).10.1088/0963-0252/1/3/011Google Scholar
[47] Katrib, Y., Martin, S. T., Hung, H. M., Rudich, Y., Zhang, H., Slowik, J. G., Davidovits, P., Jayne, J. T., and Worsnop, D. R., J. Phys. Chem. A 108, 6686 (2004).Google Scholar