Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-12T04:25:42.627Z Has data issue: false hasContentIssue false

Physics and Control of Si/Ge Heterointerfaces

Published online by Cambridge University Press:  03 September 2012

S. Fukatsu
Affiliation:
Department of Pure and Applied Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153, Japan, [email protected]
N. Usami
Affiliation:
RCAST, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153, Japan
H. Sunamura
Affiliation:
RCAST, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153, Japan
Y. Shiraki
Affiliation:
RCAST, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153, Japan
R. Ito
Affiliation:
Department of Applied Physics, Faculty of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113, Japan
Get access

Abstract

We describe physics and control of Si/SiGe heterointerfaces. A clear distinction will be made between the vertical and lateral effects of the Si/SiGe interface from the viewpoint of interface engineering. Ge surface segregation during nonequilibrium MBE growth and surfactant-mediated-growth are highlighted as prominent examples for the vertical effects while interface microroughness is addressed for the lateral effects. The influence of the interface effects on radiative recombination of indirect excitons is described in the context of SiGe-based optoelectronic applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Iyer, S.S., Tsang, J.C., Copel, M.R., Pukite, P.R. and Tromp, R.M., Appl.Phys.Lett. 54, 219 (1989).Google Scholar
2 Copel, M., Reuter, M.C., Kaxiras, E. and Tromp, R.M., Phys.Rev.Lett. 62, 632 (1990).Google Scholar
3 Zalm, P.C., van de Walle, G.F.A., Gravesteijn, D.J., and van Gorkum, A.A., Appl.Phys.Lett. 55, 2520 (1990).Google Scholar
4 Nakagawa, K. and Miyao, M., J.Appl.Phys. 69, 3058 (1991).Google Scholar
5 Fukatsu, S., Fujita, K., Yaguchi, H., Shiraki, Y., and Ito, R., Surf.Sci. 267, 79 (1992); Appl.Phys.Lett. 59 (1991) 2103; Mat.Res.Soc.Sym.Proc. 220, 217 (1991).Google Scholar
6 Fujita, K., Fukatsu, S., Igarashi, T., Yaguchi, H., Shiraki, Y., and Ito, R., Jpn.J.Appl.Phys. 29, L1981 (1990); Mat.Res.Soc.Sym.Proc. 220 193 (1991).Google Scholar
7 Godbey, D. and Ancona, M., Appl.Phys.Lett. 61, 2217 (1992); J.Vac.Sci.Technol. B11, 1120 (1193); B11, 1392 (1993).Google Scholar
8 Mencziger, U., Absteiter, G., Olajos, J., Grimmeiss, H.G., Kibbel, H., Presting, H. and Kasper, E., Phys.Rev. B47, 4009 (1993).Google Scholar
9 Ni, W.-X., Knall, J., Hasan, M.A., Hansson, G.V., Sundgren, J.-E., Barnett, S.A., Markert, L.C., and Greene, J.E., Phys.Rev. B40, 10449 (1989).Google Scholar
10 Sakamoto, K., Kyoya, K., Miki, K., Matsuhat, H., and Sakamoto, T., Jpn.J.Appl.Phys. 32, L204 (1993).Google Scholar
11 Ohtani, N., Mokler, S., Xie, M.H., Zhang, J., and Joyce, B.A., Jpn.J.Appl.Phys. 33, 2311 (1994).Google Scholar
12 Li, Y., Hembree, G.G., and Veanables, J.A., Appl.Phys.Lett. 67, 276 (1995).Google Scholar
13 Brunner, J., Menczigar, R., and Abstreiter, G., J.Vac.Sci.Technol. B11, 1097 (1993).Google Scholar
14 Fukatsu, S., Usami, N., and Shiraki, Y., Jpn.J.Appl.Phys. 31, 1502 (1992).Google Scholar
15 Fukatsu, S., Usami, N., Kato, Y., Sunamura, H., Shiraki, Y., Oku, H., Ohnishi, T., Ohmori, Y. and Okumura, K., J. Crystal Growth. 136 (1994) 315.Google Scholar
16 Jernigan, G.G., Thompson, P.E., and Silverstre, C.L., Appl.Phys.Lett. 69, 1894 (1996).Google Scholar
17 Usami, N., Fukatsu, S., and Shraki, Y., Appl.Phys.Lett. 63, 388 (1993).Google Scholar
18 Ohta, G., Fukatsu, S., Ebuchi, Y., Hattori, T., Usami, N., and Shiraki, Y., Appl.Phys.Lett. 65, 2975 (1994).Google Scholar
19 Sakamoto, K., Matsuhata, H., Miki, K., and Sakamoto, T., J.Cryst. Growth. 157, 295 (1995).Google Scholar
20 Nakagawa, K., Nishida, A., Kimura, Y., and Shimada, T., J.Cryst. Growth. 150, 939 (1995).Google Scholar
21 Olajos, J., Engvall, J., Grimmeiss, H.G., Mencziger, U., Absteiter, G., Kibbel, H., Kasper, E. and Presting, H., Appl.Phys.Lett. 63, 493 (1993).Google Scholar
22 Mencziger, U., Absteiter, G., Olajos, J., Grimmeiss, H.G., Kibbel, H., Presting, H. and Kasper, E., Phys.Rev. B47, 4009 (1993).Google Scholar
23 Schittenhelm, P., Gail, M., and Abstreiter, G., J.Cryst.Growth. 157, 260 (1995).Google Scholar
24 Sunamura, H., Shiraki, Y., and Fukatsu, S., Appl.Phys.Lett. 66, 953 (1995); 66, 3024 (1995).Google Scholar
25 Sunamura, H., Fukatsu, S., Usami, N., and Shiraki, Y., J.Cryst.Growth. 157, 265 (1995).Google Scholar
26 Olajos, J., Engvall, J., Grimmeiss, H.G., Gail, M., Abstreiter, G., Presting, H., and Kibbel, H., Phys.Rev. B54, 1922 (1996).Google Scholar
27 Sunamura, H., Usami, N., Shiraki, Y., and Fukatsu, S., Appl.Phys.Lett. 68, 1847 (1996).Google Scholar
28 Usami, N., Issiki, F., Nayak, D.K., Shraki, Y., and Fukatsu, S., Appl.Phys.Lett. 67, 524 (1995)Google Scholar
29 Usami, N., Shiraki, Y., and Fukatsu, S., Appl.Phys.Lett. 68, 2340 (1996).Google Scholar
30 Fukatsu, S., Usami, N., and Shiraki, Y., J. Vac. Sci. and Technol. B14, 2387 (1996).Google Scholar
31 Fukatsu, S., J.Mat.Sci., Electronic Materials. 6, 341349 (1995).Google Scholar
32 Muraki, K., Fukatsu, S., Shiraki, Y., and Ito, R., Surf.Sci. 267, 107 (1992).Google Scholar