Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-28T03:11:04.082Z Has data issue: false hasContentIssue false

Physical properties of La0.8Sr0.2MnO3nanotubes and fibers

Published online by Cambridge University Press:  10 April 2013

Daniel Felipe Simião
Affiliation:
Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas (CECS), Universidade Federal do ABC (UFABC), Av. dos Estados, 5001, Bairro Bangu, Santo André, SP, Brazil
Alessandra Zenatti
Affiliation:
Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas (CECS), Universidade Federal do ABC (UFABC), Av. dos Estados, 5001, Bairro Bangu, Santo André, SP, Brazil
Marcia T. Escote
Affiliation:
Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas (CECS), Universidade Federal do ABC (UFABC), Av. dos Estados, 5001, Bairro Bangu, Santo André, SP, Brazil
Get access

Abstract

This work describes the study of synthesis and physical characterization of nanostructured manganite oxides. The La0.8Sr0.2MnO3 (LSM) nanotubes and fibers have been prepared by electrospinning and pore wetting technique. The samples were characterized by Xray diffraction (XRD), scanning electron microscopy (SEM) and magnetization as a function of temperature (M(T)). XRD results of LSM fibers and nanotubes revealed that both samples crystallize in a rhombohedra-distorted perovskite structure. SEM pictures of these samples revealed ultrafine grains assembled in fibers and nanotubes samples. Analysis of these images revealed samples with external diameter ranging from 300 to 1.4 mm, and 7 μm to hundreds of mm in length. The M(T) measurements of samples La0.8Sr0.2MnO3 revealed a paramagnetic/ferromagnetic transition with decreasing temperature. Such transition occurs at temperatures of Tc ≈ 337 K and Tc ≈ 360 K for the nanotubes and fibers, respectively. Furthermore, this variation of the Tc values is also reported in literature for other manganite nanostructures. Such variation can be related to the microstructural characteristics observed for both LSM samples produced in this work. In general, it is believed that both methodologies allowed the production of nanostructures LSM. Also, these results suggest that the dimensionality of the samples seems to interfere in the physical properties of LSM manganite.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Coey, J. M. d., J. Appl. Phys. 85, 5576 (1999).CrossRefGoogle Scholar
Kong, L.-B., Solid State Commun. 133, 527529 (2005)CrossRefGoogle Scholar
Wu, G. S., Xie, T., Yuan, X.Y., Li, Y., Yang, L., Xiao, Y.H., Zhang, L.D., Solid State Commun. 134, 485489 (2005).CrossRefGoogle Scholar
Levy, P., Leyva, A. G., Troiani, H. E., and Sánchez, R. D.. Appl. Phys. Lett. 83, 5247 (2003).CrossRefGoogle Scholar
Jugdersuren, B., Kang, S., DiPietro, R. S., Heiman, D., McKeown, D., Pegg, I. L., Philip, J.. J. Appl. Phys. 109, 016109 (2011).CrossRefGoogle Scholar
Curiale, J., Sanchez, R. D., Troiani, H. E., Pastoriza, H., Levy, P., Leyva, A. G., Physica B 354, 98103 (2004).CrossRefGoogle Scholar
Tagliazucchi, M., sanchez, R. D., Troiani, H. E., Calvo, E. J., Solid State Commun. 137, 212215 (2006).CrossRefGoogle Scholar
Hueso, L., Mathur, N., Nature 427, 303 (2004).CrossRefGoogle Scholar
Sun, S., Murray, C.B., Weller, D., Folks, L., Moser, A., Science 287, 1989 (2000).CrossRefGoogle Scholar
Whitney, T. M., Jiang, J. S., Searson, P.C., Chien, C. L., Science 261, 1318 (1993).CrossRefGoogle Scholar
Li, J., Papadopoulos, C., Xu, J. M., Appl. Phys. Lett. 75, 367 (1999).CrossRefGoogle Scholar
Dey, P., Nath, T.K., Appl. Phys. Lett. 87, 162501 (2005).CrossRefGoogle Scholar
Han, S., Li, C., Liu, Z., Lei, B., Zhang, D., Jin, W., Liu, X., Tang, T., Zhou, C., Nano Lett. 4, 1241 (2004).CrossRefGoogle Scholar
Leyva, A. G., Curiale, J., Troiani, H., Rosenbusch, M., Levy, P., Sanchez, R. D., Adv. Sci. Technol. 51, 54 (2006).CrossRefGoogle Scholar
Zhi, M., Koneru, A., Yang, F., Manivannan, A., Li, J., Wu, N., Nanotechnology 23, 305501 (2012); M. Zhi, S. Lee, N. Miller, N. H. Menzler, N. Wu, Energy Environ. Sci. 5, 7066 (2012). M. Zhu, N. Mariani, R. Gemmen, K. Gerdes, N. Wu, Energy Environ. Sci. 4, 417 (2011) CrossRefGoogle Scholar
Rao, S. S., Bhat, S. V., J. Phys. D: Appl. Phys. 42, 075004 (2009)CrossRefGoogle Scholar
Zhang, T., Wang, X. P., Fang, Q. F., J. Phys. Chem. C 114, 1179611800 (2010).CrossRefGoogle Scholar
Software PDF 3 – Joint Committee of Crystallography – powder diffraction file: PDF number 53–0058.Google Scholar
Curiale, J., Sanchez, R. D., Troiani, H. E., Ramos, C. A., Pastoriza, H., Leyva, A. G., Levy, P., Phys. Rev. B 75, 224410 (2007).CrossRefGoogle Scholar
Tokura, Y. and Tomioka, Y., Journal of Magnetism and Magnetic Materials 200, 123 (1999).CrossRefGoogle Scholar
Urushibara, A., Arima, T., Asamitsu, A., Kido, G., and Tokura, Y., Physical Review B 51, 1410314109 (1995).CrossRefGoogle Scholar