Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-12T09:51:46.119Z Has data issue: false hasContentIssue false

Photoluminescence of Pulsed Ruby Laser Annealed Crystalline and Ion Implanted GaAs

Published online by Cambridge University Press:  15 February 2011

Douglas H. Lowndes
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830
Bernard J. Feldman
Affiliation:
Dept. of Physics, University of Missouri, St. Louis, MO 63121
Get access

Abstract

In an effort to understand the origin of defects earlier found to be present in p–n junctions formed by pulsed laser annealing (PLA) of ion implanted (II) semiconducting GaAs, photoluminescence (PL) studies have been carried out. PL spectra have been obtained at 4K, 77K and 300K, for both n–and p–type GaAs, for laser energy densities 0 ≤ El ≤ 0.6 J/cm2. It is found that PLA of crystalline (c−) GaAs alters the PL spectrum and decreases the PL intensity, corresponding to an increase in density of non-radiative recombination centers with increasing El. The variation of PL intensity with El is found to be different for n– and p–type material. No PL is observed from high dose (1 or 5×1015 ions/cm2 ) Sior Zn-implanted GaAs, either before or after laser annealing. The results suggest that the ion implantation step is primarily responsible for formation of defects associated with the loss of radiative recombination, with pulsed annealing contributing only secondarily.

Type
Research Article
Copyright
Copyright © Materials Research Society 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Research sponsored in part by the Division of Materials Sciences, U.S. Department of Energy under contract W–7405–eng–26 with the Union Carbide Corporation.

References

REFERENCES

1. See articles in Laser and Electron Beam Solid Interactions and Materials Processing, ed. by Gibbons, J. F., Hess, L. D., and Sigmon, T. W. (Elsevier North Holland, 1981), and preceding volumes in this conference series.Google Scholar
2. Lowndes, D. H., Cleland, J. W., Fletcher, J., Narayan, J., Westbrook, R. D., Wood, R. F., Christie, W. H., and Eby, R. E. in: Proceedings of the 15th IEEE Photovoltaic Specialists Conference (IEEE, New York 1981) p. 45.Google Scholar
3. Young, R. T., Wood, R. F., Narayan, J., and Christie, W. H. in: Laser Applications in Materials Processing (Soc. of Photo-Optical Instrumentation Engineers, SPIE vol. 198, 1980) p. 36.Google Scholar
4. Norris, C. B. and Barnes, C. E., J. Appl. Phys. 51, 5764 (1981).CrossRefGoogle Scholar
5. Mizuta, M., Sheng, N. H., and Merz, J. L., Appl. Phys. Lett. 38, 453 (1981).Google Scholar
6. Uebbing, R. H., Wagner, P., Baumgart, H., and Queisser, H. J., Appl. Phys. Lett. 37, 1078 (1980).CrossRefGoogle Scholar
7. Skolnick, M. S., Cullis, A. G., and Webber, H. C., Appl. Phys. Lett. 38, 464 (1981).CrossRefGoogle Scholar
8. Street, R. A., Johnson, N. M., and Gibbons, J. F., J. Appl. Phys. 50, 8201 (1979).CrossRefGoogle Scholar
9. Lowndes, D. H., Cleland, J. W., Christie, W. H., and Eby, R. E., Ref. 1, p. 223.Google Scholar
10. Lowndes, D. H. and Wood, R. F., Appl. Phys. Lett. 38, 971 (1981).Google Scholar
11. Fletcher, J., Narayan, J., and Lowndes, D. H. in: Defects in Semiconductors, ed. by Narayan, J. and Tan, T. Y. (Elsevier North Holland, 1981) p. 421.Google Scholar
12. Wood, R. F., Lowndes, D. H., and Christie, W. H., Ref. 1, p. 231.Google Scholar
13. Cullis, A. G., Webber, H. C., and Pailey, P., J. Phys. E.: Sci. Instr. 12, 688 (1979).Google Scholar
14. Birey, H. and Sites, J., J. Appl. Phys. 51, 619 (1980).Google Scholar
15. Lum, W. L. and Wieder, H. H., J. Appl. Phys. 49, 6187 (1978).Google Scholar
16. Voltsit, V. V., Drazhan, A. V., Zuev, V. A., Jvaniichuk, M. T., Korbutyak, D. V., and Litovchenko, V. G., Soy. Phys. Semicond. 12, 1211 (1978)Google Scholar
[Fiz. Tekh. Poluprovodn. 12, 2036 (1978)].Google Scholar
17. Mooney, P. M., Bourgoin, J. C., and Icole, J., Ref. 1, p. 255.Google Scholar
18. Norris, C. B. and Peercy, P. S., Appl. Phys. Lett. 39, 351 (1981).CrossRefGoogle Scholar