Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-28T13:45:28.702Z Has data issue: false hasContentIssue false

Photoelectrochemical Study of State of Art Copper Indium Gallium Diselenide Thin Films

Published online by Cambridge University Press:  21 March 2011

E. Clolus
Affiliation:
Laboratoire d'Electrochimie et de Chimie Analytique (UMR 7575 CNRS), Ecole Nationale Supérieure de Chimie de Paris, 11 rue Pierre et Marie Curie 75231 Paris cedex 05, France
A. Galtayries
Affiliation:
Laboratoire de Physico-Chimie des Surfaces, Ecole Nationale Supérieure de Chimie de Paris, 11 rue Pierre et Marie Curie 75231 Paris cedex 05, France
B. Canava
Affiliation:
Institut Lavoisier (IREM, UMR 8637 CNRS), Université de Versailles-Saint Quentin, 45 Av. des Etats Unis 78035 Versailles cedex, France
J. F. Guillemoles
Affiliation:
Laboratoire d'Electrochimie et de Chimie Analytique (UMR 7575 CNRS), Ecole Nationale Supérieure de Chimie de Paris, 11 rue Pierre et Marie Curie 75231 Paris cedex 05, France
D. Lincot
Affiliation:
Laboratoire de Physico-Chimie des Surfaces, Ecole Nationale Supérieure de Chimie de Paris, 11 rue Pierre et Marie Curie 75231 Paris cedex 05, France
Get access

Abstract

State of the art CIGS thin films have been studied by means of the semiconductorelectrolyte junction. They appear as chemically robust allowing to use aggressive electrolyte compositions as for instance more acidic pH, down to 0 in sulfuric acid environment. In these electrolytes, reliable capacitance and photo-current related characterization techniques have been used. It has been shown that a short treatment in a gold (III) solution can facilitate the characterizations, and stabilize the surface composition. These results tend towards settling a standardized electrochemical testing procedure for CIGS layers

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Menezes, S., Lewerenz, H.J., Backmann, K. J., Nature, 305(1983)615.Google Scholar
[2] Cahen, D., Mirovsky, Y., J. Phys. Chem. 89 (1985) 2818.Google Scholar
[3] Chen, Y. W., Cahen, D., Noufi, R., Turner, J. A., Sol. Cells, 14(1985)109 Google Scholar
[4] Lincot, D., Gomez-Meier, H., Kessler, J., Vedel, J., Dimmler, B., Schock, H. W., Sol. En. Mat., 20(1990)67.Google Scholar
[5] Siripala, W., Vedel, J., lincot, D., Cahen, D., Appl. Phys. Lett., 62(1993)519.Google Scholar
[6] Lincot, D., Kessler, J., Fauconnier, J., Zouad, M., Vedel, J., Proceedings of 8th European Photovoltaic Solar Energy Conference, (1988)1087.Google Scholar
[7] Shimizu, A., Yamada, A., Konagai, M., Jpn. J. Appl. Phys., 39(2000)109.Google Scholar
[8] Menezes, S., Canava, B., Guillemoles, J.F., Lincot, D., 26th IEEE conference, Anaheim, 1997, 411414; ibid, International ECS conference, 1999, Seattle.Google Scholar
[9]a- Gagnaire, A., Joseph, J., Etcheberry, A., Gautron, J., J. Electrochem. Soc., 132(1985)1655.Google Scholar
b- Lincot, D., Vedel, J., J. Electroanal. Chem, 269(1989)323.Google Scholar